Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The group has several attributes that distinguish it from more highly studied species in the genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in compared to , accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both and compared to . Our results represent a major advance in our understanding of genome biology in this emerging model clade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462019PMC
http://dx.doi.org/10.1101/2023.08.13.553086DOI Listing

Publication Analysis

Top Keywords

genome assemblies
12
repetitive dna
8
repetitive elements
8
genome
6
species
5
high quality
4
quality genome
4
assemblies reveal
4
reveal evolutionary
4
evolutionary dynamics
4

Similar Publications

Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.

Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.

View Article and Find Full Text PDF

A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.

View Article and Find Full Text PDF

De novo assembled nuclear, chloroplast and mitochondrial genomes show high intraspecific variation in the tropical rainforest species Symphonia globulifera.

G3 (Bethesda)

September 2025

INRAE, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914 Avignon Cedex 9, France.

Symphonia globulifera (Clusiaceae) has emerged as a model organism in tropical forest ecology and evolution due to its significant ecological role and complex biogeographical history. Originating from Africa, this species has independently colonized Caribbean, Central and South America three times, becoming a key component of tropical ecosystems across these regions. Despite the ecological importance of S.

View Article and Find Full Text PDF

Microbiome-Mediated Resistance of Wild Tomato to the Invasive Insect Prodiplosis longifila.

Environ Microbiol Rep

October 2025

Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF