Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12975-023-01178-wDOI Listing

Publication Analysis

Top Keywords

dysregulated genes
12
pi3k-akt signaling
12
signaling pathway
12
intracranial aneurysm
8
dgs identified
8
signaling
5
rupture
5
pathway
5
genes signaling
4
signaling pathways
4

Similar Publications

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

White kidney bean extract improves letrozole-induced polycystic ovary syndrome in rats by regulating the Wnt signaling pathway.

J Steroid Biochem Mol Biol

September 2025

Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming City, Yunnan Province, 650000, China. Electronic address:

Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by ovarian dysfunction, with limited effective treatments. This study investigates the therapeutic effects and mechanisms of white kidney bean extract (WKBE) in a PCOS rat model. A PCOS model was established using letrozole, followed by intervention with varying doses of WKBE.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF