98%
921
2 minutes
20
Background: Prolonged farrowing and more piglets born with low birth weight are undesirable consequences of genetic selection for increased litter size. The objective of the present observational study was to evaluate the relationship between piglets' survivability and farrowing kinetics in hyperprolific sows. A total of 58 sows of different parities and 1190 piglets were included. The entire farrowing process was monitored and the following parameters were recorded: inter-piglet birth interval, birth order, total born, live born, dead born, and mummified piglets, obstetric intervention, weight at birth and 24h, colostrum yield and intake.
Results: The sows included in this study had on average 20.6 ± 0.6 total piglets born, of which 16.4 ± 0.6 were live born, 3.3 ± 0.4 were stillborn and 0.9 ± 0.2 were mummified piglets. The average farrowing duration and average birth interval were 411.3 ± 31.6 and 20.6 ± 1.7 min, respectively. Farrowing duration was positively associated (p < 0.05) with parity, number of stillborn and mummified piglets. Piglet mortality 24h after birth was negatively affected (p < 0.01) by birth weight and positively affected (p < 0.01) by cumulative birth interval. The last tercile of piglets born (birth order ≥ 17) had the highest (p < 0.01) inter-piglet birth interval (IPBI) (43.4 ± 4.17 min) compared to piglets born in the first (birth order between 2 and 7) (26.5 ± 3.8 min) and second (birth order between 8 and 16) terciles (21.9 ± 3.8 min). Cumulative birth interval, birth weight, occurrence of stillborn piglets and manual intervention were positively associated (p < 0.05) with IPBI. Piglet birth weight was also positively associated (p < 0.01) to individual colostrum intake. Piglets ingesting more colostrum had lower (p < 0.01) mortality from 24h after birth until weaning. Sow's parity and cumulative birth interval were positively associated with the presence of stillborn piglets (p = 0.02 and p < 0.01, respectively).
Conclusion: Reducing farrowing duration may be crucial to decrease stillbirth rate and neonatal mortality in hyperprolific sows. Moreover, special care must be provided to the lighter piglets within a litter to increase their colostrum intake and minimize piglet's mortality throughout lactation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464185 | PMC |
http://dx.doi.org/10.1186/s40813-023-00332-y | DOI Listing |
Front Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFTheriogenology
September 2025
Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address: tanchen
This study evaluated the effects of maternal lysozyme oligomer (LYZ) supplementation on sow reproductive performance and piglet growth performance. Multiparous sows were randomly allocated to two groups: control and 0.1 % dietary LYZ.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia.
Introduction: Metabolic alkalosis induced by prepartum diet cations impairs Ca homeostasis in the periparturient cow. Adding anions to prepartum diets reduces blood pH improving periparturient Ca homeostasis. Urine pH generally reflects blood pH and is practical to measure on farm.
View Article and Find Full Text PDFFront Microbiol
August 2025
College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Porcine rotavirus (PoRV) is one of the major pathogens causing viral enteritis in piglets, posing serious threats to the pig industry and public health. Existing pathogen detection methods, such as RT-qPCR, suffer from complex procedures and strong reliance on equipment, making them difficult to meet the needs of grassroots laboratories or field detection. Therefore, in this study, a novel rapid and visual detection platform, was developed based on the CRISPR/Cas13 system.
View Article and Find Full Text PDF