Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Human security is threatened by terrorism in the 21st century. A rapidly growing field of study aims to understand terrorist attack patterns for counter-terrorism policies. Existing research aimed at predicting terrorism from a single perspective, typically employing only background contextual information or past attacks of terrorist groups, has reached its limits. Here, we propose an integrated deep-learning framework that incorporates the background context of past attacked locations, social networks, and past actions of individual terrorist groups to discover the behavior patterns of terrorist groups. The results show that our framework outperforms the conventional base model at different spatio-temporal resolutions. Further, our model can project future targets of active terrorist groups to identify high-risk areas and offer other attack-related information in sequence for a specific terrorist group. Our findings highlight that the combination of a deep-learning approach and multi-scalar data can provide groundbreaking insights into terrorism and other organized violent crimes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457427 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18895 | DOI Listing |