Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized "native" soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166570 | DOI Listing |