Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The judicious selection of 5,7-dibromo-2-methy-8-quinolinol (BQ) as a Mn(II) ionophore results in the synthesis of Mn(BQ)(DMSO)·DMSO (1), a potent metalloantibiotic with a dual antimicrobial mode of action against four different strains of (SA) bacteria (MIC = 0.625 μg mL). Additionally, 1 can overcome ciprofloxacin-resistance in methicillin-resistant SA bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt01904gDOI Listing

Publication Analysis

Top Keywords

dual antimicrobial
8
antimicrobial mode
8
mode action
8
harnessing dual
4
action lipophilic
4
lipophilic mnii
4
mnii complex
4
complex principle
4
principle irving-williams
4
irving-williams series
4

Similar Publications

Chargeable Hydrogels with Dual Modulatory Effects of Bacterial Killing and Immune Remodeling toward Wound Healing.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.

Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.

View Article and Find Full Text PDF

Alternating Magnetic Fields Remove Biofilms but Damage Cells on Implant Models Also with Negligible Bulk Heating.

ACS Appl Mater Interfaces

September 2025

Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.

Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.

View Article and Find Full Text PDF

Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.

View Article and Find Full Text PDF

Development and application of dialdehyde starch-grafted ε-polylysine copolymers as eco-friendly fruit detergents.

Food Chem

September 2025

Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; State Key Laboratory of Food Science a

Chemical detergents are extensively used to remove pesticide residues and foodborne pathogens on fresh fruits, but their residues are toxic to humans. To address this issue, a dual-functional starch copolymer, specifically dialdehyde starch-grafted ε-polylysine copolymer (DIA-ε-PL starch), was synthesized utilizing native starch with surfactant properties and the natural antimicrobial cationic peptide ε-polylysine (ε-PL). The effectiveness of DIA-ε-PL starch as a fruit detergent was subsequently evaluated.

View Article and Find Full Text PDF

Background: Fluconazole-tacrolimus interactions occur, but the additional effect of ritonavir is emphasized here, underscoring the need for careful prescription reconciliation in renal transplant recipients living with HIV-AIDS to prevent accidental ritonavir coadministration and inadvertent tacrolimus toxicity. The findings provide valuable insight for therapeutic drug monitoring (TDM) specialists. Patient informed consent was obtained for publication of the anonymized data.

View Article and Find Full Text PDF