98%
921
2 minutes
20
Introduction: The need for effective therapeutic regimens for non-critically ill patients during the COVID-19 pandemic remained largely unmet. Previous work has shown that a combination of three aromatic plants' essential oils (CAPeo) ( (L.) Cav., L., Mill.) has remarkable in vitro antiviral activity. Given its properties, it was urgent to explore its potential in treating mild COVID-19 patients in primary care settings.
Methods: A total of 69 adult patients were included in a clinical proof-of-concept (PoC) intervention study. Family physicians implemented the observational study in two arms (intervention group and control group) during three study periods (IG, IG, and CG). The SARS-CoV-2 infection was confirmed by real-time PCR. The CAPeo mixture was administered daily for 14 days per os in the intervention group, while the control group received usual care.
Results: The PoC study found that the number and frequency of general symptoms, including general fatigue, weakness, fever, and myalgia, decreased following CAPeo administration. By Day 7, the average presence (number) of symptoms decreased in comparison with Day 1 in IG (4.7 to 1.4) as well as in CG (4.0 to 3.1), representing a significant decrease in the cumulative presence in IC (-3.3 vs. -0.9, < 0.001; η = 0.20) on Day 7 and on Day 14 (-4.2 vs. -2.9, = 0.027; η = 0.08).
Discussion/conclusions: Our findings suggest that CAPeo possesses potent antiviral activity against SARS-CoV-2 in addition tο its effect against influenza A and B and human rhinovirus HRV14 strains. The early and effective impact on alleviating key symptoms of COVID-19 may suggest this mixture can act as a complementary natural agent for patients with mild COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443288 | PMC |
http://dx.doi.org/10.3390/diseases11030105 | DOI Listing |
Compr Rev Food Sci Food Saf
September 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.
View Article and Find Full Text PDFBrain Behav
September 2025
Faculty of Medicine, Department of Physiology, Hacettepe University, Ankara, Türkiye.
Purpose: The rapid onset of anxiolytic drugs without cognitive or motor impairments remains an unmet need. This study evaluated the acute anxiolytic effects of Salvia heldreichiana essential oil in rats, measuring anxiety-related behaviors, hippocampal levels of serotonin, noradrenaline, gamma-aminobutyric acid GABA, and serum cortisol.
Method: Forty-eight male Wistar albino rats were divided into two experiments.
Food Res Int
November 2025
College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China. Electronic address:
Huajiao seeds represent an underutilized high-quality woody oilseed resource rich in unsaturated fatty acids and diverse nutritional factors. This study investigated the quality characteristics and digestive behavior of two Huajiao seed oils (Zanthoxylum bungeanum seed oil (ZBSO) and Zanthoxylum schinifolium seed oil (ZSSO)). The results demonstrated that both oils were rich in unsaturated fatty acids, with ZBSO containing 76.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Animal Science, Iowa State University, Ames, IA 50011, United States. Electronic address:
Lutein and omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer significant health benefits, especially when consumed together. However, their incorporation in food is often low due to their instability during processing and storage. Meat products play an essential role in human nutrition and are generally deficient in lutein and omega-3 fatty acids.
View Article and Find Full Text PDFFront Microbiol
August 2025
Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
Essential oils (EOs) hold significant potential as antimicrobials in food, due to their high concentration of active phenolic compounds. These compounds can target bacterial cells through various mechanisms, such as membrane disruption, inhibition, and interference in virulence factors, affecting microorganisms at a genomic level. and are key foodborne bacteria that could be managed using these natural preservatives.
View Article and Find Full Text PDF