Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Salinomycin (SAL) has caused widespread pollution as a feed additive and growth promoter in livestock such as pigs, exerting a negative impact on public health. The toxicity mechanism of SAL has been widely studied in chickens, but the underlying mechanisms of SAL-induced toxicity to pigs and the ecosystem remain undefined. In this study, we explored the potential damage of SAL in IPEC-J2 cells to identify the effects of excessive SAL on the interplay between mitophagy and oxidative stress. The results showed that a concentration-dependent response was observed for SAL in altering cellular morphology and inducing cell death in IPEC-J2 cells, including the induction of cell cycle arrest and lactic dehydrogenase (LDH) release. Meanwhile, we found that excessive SAL led to oxidative damage by activating the Nrf2/Keap1/HO-1 pathway, accompanied by reactive oxygen species (ROS) elevation and the reduction of antioxidant enzyme activity. We also found that PINK1/Parkin-dependent mitophagy was activated by SAL exposure, particularly with mitochondrial membrane potential reduction. Interestingly, SAL-induced oxidative damages were prevented after the autophagy inhibitor 3-methyladenine (3-MA) treatment, and mitophagy was alleviated following ROS scavenger (N-acetylcysteine, NAC) treatment. Overall, our findings showed that SAL stimulated oxidative stress and mitophagy in IPEC-J2 cells resulting in cellular injury, and there was a strong connection between SAL-induced oxidative stress and mitophagy. Targeting ROS/PINK1/Parkin-dependent mitophagy and oxidative stress could be a novel protective mechanism in SAL-induced cell damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166441 | DOI Listing |