Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The incidence of diseases of affluence, such as diabetes mellitus, cardiovascular diseases, high blood pressure, and high cholesterol has been reported to rise. Consequently, the concentrations of residues of drugs designed to treat these diseases have been rising in water bodies. Moreover, the toxicity of these pharmaceuticals towards fish and other non-target organisms can be even enhanced by microplastic particles that are reportedly present in surface water. Therefore, the aim of this study was to describe the effects of three highly prescribed drugs, in particular metoprolol, enalapril, and metformin on fish early-life stages. Also, it was hypothesized that polystyrene microparticles will increase the toxicity of metoprolol to fish early-life stages. Embryonal acute toxicity tests on Danio rerio and Cyprinus carpio were carried out in order to describe the possible toxic effects of metoprolol, enalapril, and metformin. Also, the acute toxicity of polystyrene microparticles and the combination of metoprolol with polystyrene microparticles were tested on D. rerio embryos. Additionally, a 31-day long embryo-larval subchronic toxicity test was carried out with C. carpio in order to describe the long-term effects of low concentrations of metoprolol. The results of the study show that both metoprolol and enalapril have the potential to disrupt the early development of the heart in the embryonal stages of fish. Also, enalapril and metformin together with polystyrene microparticles seem to possibly disrupt the reproduction cycle and act as endocrine disruptors. Both pure polystyrene microparticles and the combination of them with metoprolol affect inflammatory processes in organisms. Additionally, metformin alters several metabolism pathways in fish early-life stages. The results of the study bring new evidence that even low, environmentally-relevant concentrations of pharmaceuticals have the potential to disrupt the early development of fish, particularly on a molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166378DOI Listing

Publication Analysis

Top Keywords

polystyrene microparticles
20
early development
12
metoprolol enalapril
12
enalapril metformin
12
fish early-life
12
early-life stages
12
diseases affluence
8
development fish
8
acute toxicity
8
order describe
8

Similar Publications

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

We introduce a novel method using a kilohertz (kHz) amplified 800 nm laser for the first experimental confinement of microparticles within a single beam. This study demonstrates that high-energy kHz pulses can confine 1-μm-radius polystyrene beads in water within ∼26 μm. This approach utilizes the unique properties of high-energy pulsed lasers, distinct from continuous-wave and megahertz pulsed lasers traditionally used in optical trapping.

View Article and Find Full Text PDF

Extending the Linear Dynamic Range of Single Particle ICP-MS for the Quantification of Microplastics.

Anal Chem

September 2025

Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States.

In response to the growing concern of microplastics (1 μm to 5 mm) accumulation affecting human health, the development of analytical methods continues to be critical for the detection and characterization of microplastic particles. In this context, pursuing exceptional particle detection capability down to practical low levels and rapid analyses with high sample throughput makes single particle inductively coupled plasma mass spectrometry (spICP-MS) very attractive for microplastics analysis. Existing spICP-MS-based studies have routinely shown limitations in the accurate sizing and quantification of particle number concentration through targeting carbon content, with reported size limits of detection in the range of 0.

View Article and Find Full Text PDF

Sorting and isolating specific cells from heterogeneous populations are crucial for many biomedical applications, including drug discovery and medical diagnostics. Conventional methods such as Fluorescent Activated Cell Sorting (FACS) and Magnetic Activated Cell Sorting (MACS) face limitations in throughput, cost, and the ability to separate subtly different cells. Cell partitioning in Aqueous Two-Phase Systems (ATPSs) offers a biocompatible and cost-effective alternative, particularly when combined with continuous-flow microfluidics.

View Article and Find Full Text PDF

Developing advanced affinity adsorbents for immunoglobulin G (IgG) selective separation and purification is vital for clinical diagnosis and therapy. However, high-cost and low-specificity methods hinder high-purity IgG production. This work has fabricated nanoporous heterostructure microparticles by emulsion polymerization of styrene, divinylbenzene, and acrylic acid on the surface of sulfonated polystyrene particles.

View Article and Find Full Text PDF