Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Objectives: Commercially available lead localization software for deep brain stimulation (DBS) often relies on postoperative computed tomography (CT) scans to define electrode positions. When cases are performed with intraoperative MRI, another imaging set exists with which to perform these localizations. To compare DBS localization error between postoperative CT scans and intraoperative MRI.
Methods: A retrospective cohort of patients who underwent MRI-guided placement of DBS electrodes using the ClearPoint platform was identified. Using Brainlab Elements, postoperative CT scans were coregistered to intraoperative magnetic resonance images visualizing the ClearPoint guidance sheaths and ceramic stylets. DBS electrodes were identified in CT scans using Brainlab's lead localization tool. Trajectory and vector errors were quantified between scans for each lead in each patient.
Results: Eighty patients with a total of 157 implanted DBS electrodes were included. We observed mean trajectory and vector errors of 0.78 ± 0.44 mm (range 0.1-2.0 mm) and 1.57 ± 0.79 mm (range 0.2-4.2 mm), respectively, between postoperative CT and intraoperative MRI. There were 7 patients with CT scans collected at multiple time points. Trajectory error increased by 0.15 ± 0.42 mm ( P = .31), and vector error increased by 0.22 ± 0.53 mm ( P = .13) in the later scans. Across all scans, there was no significant association between trajectory ( P = .053) or vector ( P = .98) error and the date of CT acquisition. DBS electrodes targeting the subthalamic nucleus had significantly greater trajectory errors ( P = .02) than those targeting the globus pallidus pars internus nucleus.
Conclusion: Commercially available software produced largely concordant lead localizations when comparing intraoperative MRIs with postoperative CT scans, with trajectory errors on average <1 mm. CT scans tend to be more comparable with intraoperative MRI in the immediate postoperative period, with increased time intervals associated with a greater magnitude of error between modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245324 | PMC |
http://dx.doi.org/10.1227/ons.0000000000000849 | DOI Listing |