Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Species of the genus are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain MB-1 and its reisolates obtained after eight passages through larvae or or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward and as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of to insects, plants, and media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424674PMC
http://dx.doi.org/10.7717/peerj.15726DOI Listing

Publication Analysis

Top Keywords

insect plant
12
physiological alterations
8
passaging insect
8
parent strain
8
sabouraud medium
8
alterations relative
8
parental strain
8
insect
5
virulence
5
effects passages
4

Similar Publications

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

The Earth's grasslands have experienced extensive alterations to their grazing regimes over the course of human history. We asked how native grassland herbivores (bison, prairie dogs, and grasshoppers) and a non-native herbivore that has become dominant (cattle) affect seasonal patterns of plant and soil elemental chemistry and aboveground plant biomass in a shortgrass prairie in the North American Northern Great Plains. To quantify herbivore effects, we sampled plants and soils across 4 months of the growing season in 15 grassland sites comprising five herbivore regimes with varying densities of bison, cattle, prairie dogs, and grasshoppers.

View Article and Find Full Text PDF

Ultrasonic pulse repetition rates triggering escape responses of a moth pest.

Pest Manag Sci

September 2025

Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.

Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.

View Article and Find Full Text PDF

This study presents the first record of Kanturski & Lee, 2024 (Aphididae: Lachninae) in South Korea, thereby extending its known distribution beyond Japan and identifying a new host plant, (Rosaceae). We describe diagnostic morphological traits across multiple life stages and compare them with those of Japanese populations. Comparative analyses with Japanese populations demonstrated consistent morphological differentiation, notably elevated ratios of the ultimate rostral segment to antennal segments across multiple morphs in the Korean population, indicating potential ecological adaptation.

View Article and Find Full Text PDF

Aerobic degradation of hexachlorobenzene and pentachloronitrobenzene by Cupriavidus nantongensis HB4B5: Dechlorination mechanisms and bioremediation potential.

Environ Int

August 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Organochlorine pesticides (OCPs), including hexachlorobenzene (HCB) and pentachloronitrobenzene (PCNB), are highly toxic and persistent pollutants that pose significant ecological and human health risks. Their chemical stability makes them particularly resistant to biodegradation. In this study, we isolated and characterized Cupriavidus nantongensis HB4B5, a novel aerobic bacterium capable of efficiently degrading HCB and PCNB, without the accumulation of toxic intermediates.

View Article and Find Full Text PDF