Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reovirus σNS RNA-binding protein is required for formation of intracellular compartments during viral infection that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of an R6A mutant of σNS that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure of selenomethionine-substituted σNS-R6A reveals that the mutant protein forms a stable antiparallel dimer, with each subunit having a well-folded central core and a projecting N-terminal arm. The dimers interact with each other by inserting the N-terminal arms into a hydrophobic pocket of the neighboring dimers on either side to form a helical assembly that resembles filaments of WT σNS in complex with RNA observed using cryo-EM. The interior of the crystallographic helical assembly is positively charged and of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same hydrophobic pocket as the N-terminal arm, as demonstrated in the crystal structure of σNS-R6A in complex with bile acid, suggesting that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS. This idea is supported by the structure of σNS lacking the N-terminal arm. We discovered that σNS displays RNA helix destabilizing and annealing activities, likely essential for presenting mRNA to the viral RNA-dependent RNA polymerase for genome replication. The RNA chaperone activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418060PMC
http://dx.doi.org/10.1101/2023.07.31.551319DOI Listing

Publication Analysis

Top Keywords

n-terminal arm
20
helical assembly
12
σns
11
rna chaperone
8
genome replication
8
σns lacking
8
crystal structure
8
hydrophobic pocket
8
bile acids
8
rna
6

Similar Publications

Resistance breeding for rice blast is an economic strategy for protecting rice crops against this disease. Genes with nucleotide-binding site leucine-rich repeat (NBS-LRR) structures are known to contribute to disease resistance. Here, we identified a candidate resistance gene, named (t), associated with leaf and panicle blasts in an introgression line carrying the chromosome 4 segment of wild rice ( Griff.

View Article and Find Full Text PDF

This pooled subanalysis of five multicenter, prospective, open-label, single-arm studies on esaxerenone aimed to evaluate the efficacy, organ-protective effects, and safety of esaxerenone in hypertensive patients with type 2 diabetes mellitus (T2DM), with and without concomitant sodium-glucose cotransporter-2 inhibitor (SGLT2i) therapy. In total, 283 and 279 patients were included in the safety (with SGLT2i, 148; without, 135) and full analysis sets (with SGLT2i; 145; without, 134), respectively. Significant changes in morning home systolic/diastolic blood pressure (SBP/DBP) from baseline to Week 12 were shown in the overall population (mean change: -11.

View Article and Find Full Text PDF

Catalase is a crucial enzyme that protects organisms from reactive oxygen species (ROS)-induced oxidative stress. eKatE, a recently identified catalase variant in commensal Escherichia coli (E. coli), significantly contributes to infectious diseases and inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Post-LECA Origin and Diversification of an Axonemal Outer Arm Dynein Motor.

Cytoskeleton (Hoboken)

August 2025

Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.

Dyneins were present in the last eukaryotic common ancestor (LECA) and play key roles in eukaryotic biology. Axonemal dyneins form the inner and outer arms that power ciliary beating, and it has long been recognized that outer arms in some organisms contain two different heavy chain motors, whereas those from other species contain a third unit that imparts enhanced motive force during ciliary beating. Previous phylogenetic analyses suggested that this third motor derived from a gene duplication event in the LECA, followed by the subsequent replacement of the N-terminal assembly domain with one formed from kelch and immunoglobulin repeats.

View Article and Find Full Text PDF

In eukaryotic cells, mitochondria and the endoplasmic reticulum (ER) form close contacts at mitochondria-associated ER membranes (MAMs), which are involved in diverse cellular processes. The outer mitochondrial membrane protein Fis1, known for its role in mitochondrial fission, has been reported to interact with the ER-resident protein Bap31. Here, we present crystal structures of the cytosolic domain of human Fis1 in two distinct conformations, along with a co-crystal structure of Fis1 bound to the C-terminal region of the Bap31_vDED domain.

View Article and Find Full Text PDF