Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biochar production through thermochemical processing is a sustainable biomass conversion and waste management approach. However, commercializing biochar faces challenges requiring further research and development to maximize its potential for addressing environmental concerns and promoting sustainable resource management. This comprehensive review presents the state-of-the-art in biochar production, emphasizing quantitative yield and qualitative properties with varying feedstocks. It discusses the technology readiness level and commercialization status of different production strategies, highlighting their environmental and economic impacts. The review focuses on integrating machine learning algorithms for process control and optimization in biochar production, improving efficiency. Additionally, it explores biochar's environmental applications, including soil amendment, carbon sequestration, and wastewater treatment, showcasing recent advancements and case studies. Advances in biochar technologies and their environmental benefits in various sectors are discussed herein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129634DOI Listing

Publication Analysis

Top Keywords

biochar production
16
environmental applications
8
machine learning
8
biochar
6
environmental
5
production environmental
4
applications developments
4
developments machine
4
learning insights
4
insights biochar
4

Similar Publications

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.

View Article and Find Full Text PDF

Agricultural supply chains face significant challenges in achieving food security and sustainability, particularly due to climate change and waste production. Effectively managing these supply chains, especially in the context of uncertainties, is crucial for optimizing resource use and minimizing waste. This research develops a multi-objective optimization for designing a sustainable and responsive closed-loop agricultural supply chain network, focusing on jujube products under uncertain conditions.

View Article and Find Full Text PDF