98%
921
2 minutes
20
Rice chromosomal segment substitution lines (CSSLs) are ideal materials for studying quantitative traits such as grain size. Here, a rice large-grain CSSL-Z403 was identified among progeny of the recipient Xihui18 and the donor Jinhui35 based on molecular marker-assisted selection. Z403 carried 10 substitution segments with average length of 3.01 Mb. Then, a secondary F population derived from a cross between Xihui18 and Z403 was used to map quantitative trait loci (QTL) for grain size. Six QTLs distributed on chromosomes 5, 6, 7, 9 and 12 were detected. Finally four single-segment substitution lines (SSSLs) and two dual-segment substitution lines (DSSLs) carrying these target QTLs were constructed, and 10 novel QTLs were identified by four SSSLs. The large grain of Z403 was controlled at least by , , and , and its grain weight was influenced through grain length QTL such as , , and , as well as grain width QTL such as , , and . Among 16 QTLs, four QTLs including , etc., might be novel compared with the reported documents. Again, positive or less negative epistatic effects between two non-allelic QTLs (additive effect > 0) may assist screening the genotype with larger grain size in further selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418668 | PMC |
http://dx.doi.org/10.3390/ijms241512013 | DOI Listing |
Plant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDFEnviron Pollut
September 2025
State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:
This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Geography, Nara Women's University, Nara, Japan.
Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.
View Article and Find Full Text PDF