98%
921
2 minutes
20
Diffuse large B-cell lymphoma (DLBCL) is characterized by high molecular and clinical heterogeneity. Autophagy, a lysosome-driven catabolic process devoted to macromolecular turnover, is fundamental in maintaining normal hematopoietic stem cells and progenitors homeostasis, and its dysregulation plays a critical role in the initiation and progression of hematological malignancies. One main regulator of autophagy is BECLIN-1, which may interact alternatively with either BCL-2, thus allowing apoptosis, or PI3KC3, thus promoting autophagy. The altered expression of and correlates with lymphoma outcomes, but whether this is associated with dysregulated cross-talk between autophagy and apoptosis remains to be elucidated. Analysis of the TCGA database revealed that and mRNA expression were inversely correlated in DLBCL patients. In representative DLBCL cell lines exposed to doxorubicin, the cells highly expressing BCL-2 were resistant, while the ones highly expressing BECLIN-1 were sensitive, and this correlated with low and high autophagy flux, respectively. Venetoclax targeting of BCL-2 increased while the spautin-1-mediated inhibition of BECLIN-1-dependent autophagy reversed doxorubicin sensitivity in the former and in the latter, respectively. By interrogating the TCGA DLBCL dataset, we found that and acted as negative and positive prognostic markers for DLBCL, respectively. The differentially expressed gene analysis in the respective cohorts revealed that positively correlated with oncogenic pathways (e.g., glucose transport, HIF1A signaling, JAK-STAT signaling, PI3K-AKT-mTOR pathway) and negatively correlated with autophagy-related transcripts, while showed the opposite trend. Notably, patients with high expression displayed longer survival. Our data reveal, for the first time, that the modulation of BECLIN-1-dependent autophagy influences the prognosis of DLBCL patients and provide a mechanistic explanation supporting the therapeutic use of drugs that, by stimulating autophagy, can sensitize lymphoma cells to chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417641 | PMC |
http://dx.doi.org/10.3390/cells12151924 | DOI Listing |
Am J Physiol Cell Physiol
September 2025
Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany.
The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA.
Unlabelled: Zika virus (ZIKV) is the lone member of Flavivirus family known to cause congenital glaucoma following exposure. The molecular mechanisms of ZIKV-induced glaucoma remain elusive, with no known therapeutic modalities. Autophagy plays a dual role in viral infections and glaucoma pathogenesis.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Dr. B. R. Ambedkar Centre for Biomedical Research North Campus , University of Delhi, 110007, Delhi, India.
Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.
View Article and Find Full Text PDF