Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study investigated the impact of ultrasonic extraction (UE) on the structure and in vitro antibacterial activity of polysaccharides from sugarcane leaves (SLW). Native sugarcane leaf polysaccharides were treated with ultrasound (480 W) for 3 h to yield sugarcane leaf polysaccharides (SLU). Compared to SLW (33.59 kDa), the molecular weight of SLU (13.08 kDa) was significantly decreased, while the monosaccharide composition of SLU was unchanged. The results of SEM and XRD indicated that UE significantly changed the surface morphology of SLW and destroyed its inner crystalline structure. In vitro experiments showed that SLU had stronger antibacterial activity. These findings revealed that UE treatment could alter the tertiary structure of SLW but had no impact on its primary structure. Furthermore, the antibacterial activity of SLW could be greatly enhanced after UE treatment. As a bioactive additive, SLU has great application potential in functional foods, cosmetics, and pharmaceuticals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202300006 | DOI Listing |