Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Studies have shown that long non-coding RNAs (lncRNAs) are found to be hypoxia-regulated lncRNAs in cancer. Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide, and despite early surgical removal, has a poor prognosis and a high recurrence rate. Thus, we aimed to identify subtype classifiers and construct a prognostic risk model using hypoxia-associated long noncoding RNAs (hypolncRNAs) for LUAD.

Methods: Clinical data of LUAD samples with prognosis information obtained from the Gene Expression Omnibus (GEO), acted as validation dataset, and The Cancer Genome Atlas (TCGA) databases, served as training dataset, were used to screen hypolncRNAs in each dataset by univariate Cox regression analysis; the intersection set was used for subsequent analyses. Unsupervised clustering analysis was performed based on the expression of hypolncRNAs using the 'ConsensuClusterPlus' package. The tumor microenvironment (TME) was compared between LUAD subgroups by analyzing the expression of immune cell infiltration, immune components, stromal components, immune checkpoints, and chemokine secretion. To identify robust prognostically associated hypolncRNAs and construct a risk score model, multivariate Cox regression analysis was performed.

Results: A total of 14 hypolncRNAs were identified. Based on the expression of these hypolncRNAs, patients with LUAD were classified into three hypolncRNA-regulated subtypes. The three subtypes differed significantly in immune cell infiltration, stromal score, specific immune checkpoints, and secretion of chemokines and their receptors. The Tumor Immune Dysfunction and Exclusion (TIDE) scores and myeloid-derived suppressor cell (MDSC) scores were also found to differ significantly among the three hypolncRNA-regulated subtypes. Four of the 14 hypolncRNAs were used to construct a signature to distinguish the overall survival (OS) in TCGA dataset (P<0.0001) and GEO dataset (P=0.0032) and sensitivity to targeted drugs in patients at different risks of LUAD.

Conclusions: We characterized three regulatory subtypes of hypolncRNAs with different TMEs. We developed a signature based on hypolncRNAs, contributing to the development of personalized therapy and representing a new potential therapeutic target for LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407533PMC
http://dx.doi.org/10.21037/jtd-23-952DOI Listing

Publication Analysis

Top Keywords

subtype classifiers
8
prognostic risk
8
risk model
8
lung adenocarcinoma
8
cox regression
8
regression analysis
8
based expression
8
expression hypolncrnas
8
immune cell
8
cell infiltration
8

Similar Publications

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.

View Article and Find Full Text PDF

Hematopathological profile of plasmacytoid dendritic cell proliferation associated with non-myeloid acute leukemia.

Cytometry B Clin Cytom

September 2025

Department of Hematopathology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, Ch

Two types of plasmacytoid dendritic cell (pDC) proliferation disease are acknowledged so far by the 5th edition of the World Health Organization Classification of Haematolymphoid Tumors: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and mature pDC proliferation associated with myeloid neoplasms (MPDCP) in which pDC is part of the malignant clone. We aim to investigate pDC proliferation associated with non-myeloid acute leukemia (AL). A retrospective analysis of all cases admitted in our center with a diagnosis of non-myeloid AL from September 2020 to April 2023 was performed to select cases with pDCs greater than 2% of bone marrow by flow cytometry (FCM).

View Article and Find Full Text PDF

Study Design: Narrative review.

Objective: Summarize current classification systems, preoperative considerations, surgical approaches, and outcomes in patients with cervical deformity.

Summary Of Background Data: Cervical deformity (CD) is a complex pathology with varying presentations.

View Article and Find Full Text PDF

Study Design: Narrative review.

Objective: To synthesize current knowledge on radiographic parameters, classification systems, and compensatory mechanisms essential to the diagnosis and surgical planning of cervical spine deformity (CD) correction.

Summary Of Background Data: CD encompasses a heterogeneous set of conditions associated with neurological impairment and impaired health-related quality of life.

View Article and Find Full Text PDF