Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diamond surface functionalization has received significant research interest recently. Specifically, H-termination has been widely adopted because it endows the diamond surface with negative electron affinity and the hole carrier is injected in the presence of surface transfer dopants. Exploring different functional groups' attachment on diamond surfaces and their impact on the electronic structure, using wet and dry chemical approaches, would hence be of interest in engineering diamond as a semiconductor. Here, we report the functionalization of the H-terminated diamond surface with nitrogen and sulfur heteroatoms. Surface characterization of functionalized diamond surfaces shows that these groups are well-distributed and covalently bonded to diamonds. Four chemical functional groups (-SH, -S-S-, -S-O, and -S=O) were found on the sulfurized diamond surface, and two groups (-NH and =NH) upon amination. We also report co-functionalization of surface with N and S (N-S), where sulfurization promotes sequential amination efficiency with reduced exposure time. Electrical measurement shows that heteroatom-modified diamond surfaces possess higher conductivity than H-terminated diamonds. Density functional theory (DFT) shows that upon functionalization with various N/S ratios, the conduction band minimum and valence band maximum downshift, which lowers the bandgap in comparison to an H-terminated diamond. These observations suggest the possibility of heteroatom functionalizations with enhanced surface electrical conductivity on the diamond that are useful for various electronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c07102DOI Listing

Publication Analysis

Top Keywords

diamond surfaces
16
diamond surface
16
h-terminated diamond
12
diamond
11
functionalization h-terminated
8
surface
8
heteroatom functionalization
4
h-terminated
4
surfaces
4
surfaces diamond
4

Similar Publications

A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.

View Article and Find Full Text PDF

Formation of surfaces oxide vacancies in porous ZnCoO nanoflowers for enhanced energy storage performance.

Discov Nano

September 2025

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.

A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.

View Article and Find Full Text PDF

Chemical alteration of UO micro-particles in model lung systems.

J Hazard Mater

August 2025

Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:

Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.

View Article and Find Full Text PDF

Low-temperature molten-salt enabled synthesis of highly-efficient solid-state emitting carbon dots optimized using machine learning.

Nat Commun

September 2025

Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, China.

Fluorescent carbon dots (CDs) have garnered significant attention for their unique optoelectronic properties and applications, but their practical employment is hampered by the excessive synthesis temperature, tedious post-processing and limited solid-state luminescence efficiency. Herein, we develop a facile molten salt method to achieve the one-step synthesis of full-color CDs with efficient solid-state emission. Comprehensively, kilogram-scale solid-state CDs with a quantum yield of 90% can be readily synthesized via a salt-assisted approach under mild conditions (100-142 °C) within 10 min.

View Article and Find Full Text PDF

Van der Waals β-GaO thin films on polycrystalline diamond substrates.

Nat Commun

August 2025

The State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xi'an, China.

The self-heating effect in wide bandgap semiconductor devices makes epitaxial GaO on diamond substrates crucial for thermal management. However, the lack of wafer-scale single-crystal diamond and severe lattice mismatch limit its industrial application. This study presents van der Waals β-GaO (VdW-β-GaO) grown on high-thermal-conductivity polycrystalline diamond.

View Article and Find Full Text PDF