Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2023.2241698DOI Listing

Publication Analysis

Top Keywords

melanoma models
8
melanoma
6
potential therapeutic
4
targets
4
therapeutic targets
4
targets quercetin
4
quercetin cutaneous
4
cutaneous melanoma
4
melanoma model
4
model cellular
4

Similar Publications

Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.

Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.

View Article and Find Full Text PDF

Objective: We hypothesized that anatomic location of metastatic melanoma is associated with the degree of therapeutic response to TVEC.

Summary: TVEC is the first FDA-approved injectable oncolytic virus to treat unresectable stage IIIB-IV metastatic melanoma patients. Previously published real-world outcomes demonstrated a 39% complete response (CR) rate to TVEC.

View Article and Find Full Text PDF

Background: Sunscreen reduces vitamin D production in experimental studies. It is uncertain whether this translates to 'real-world' settings.

Objectives: We aimed to dtermine if routinely applying high-SPF sunscreen for one year reduces serum 25-hydroxyvitamin D [25(OH)D] concentration.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Cellular Senescence and Immunosenescence in Melanoma: Insights From the Tumor Microenvironment.

Cancer Med

September 2025

Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Background: Melanoma is one of the most immunogenic malignancies, yet resistance to immune checkpoint inhibitors (ICIs) remains a major obstacle to durable therapeutic success. Emerging evidence indicates that aging-related processes, including cellular senescence and immunosenescence, can reshape the tumor microenvironment (TME) to favor immune evasion and disease progression. Senescent melanoma and stromal cells secrete a senescence-associated secretory phenotype (SASP) that alters immune cell recruitment and function, while immunosenescence leads to diminished cytotoxic responses and the accumulation of dysfunctional or suppressive immune subsets.

View Article and Find Full Text PDF