Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m s light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129619 | DOI Listing |