A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The detection of miRNA in cells is difficult owing to its substantially low cellular content. Therefore, developing a highly sensitive sensor to detect cellular miRNA remains a significant challenge. Herein, we report an enzyme-assisted biosensor with target cycle amplification that can trigger the unlocking of locked hairpin probes for sensitive and robust let-7a gene detection. In the research, three kinds of hairpin probes were skillfully designed. The hairpin probe comprises a complementary sequence of a target, primer, and recognition site of Nt. BbvCI restriction endonucleases. In addition, the alternating synergistic impact of polymerase and the nicking enzyme generates considerable triggers to unlock the locked hairpin probe LH1, consequently triggering a subsequent circulating strand displacement reaction to form a stable H1-H2 double strand to ensure sufficient distance between a fluorophore on H1 and a quenching group on bolt DNA (bDNA), and resulting in the recovery of fluorescence. Furthermore, this process does not require complicated operation procedures and instruments, and the target gene let-7a can be sensitively detected. Specifically, the detection limit of the biosensor is as low as 160 fM, and its linear range is 0.5 pM-250 nM. Moreover, this biosensor can be employed to detect let-7a in human serum with good selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125023DOI Listing

Publication Analysis

Top Keywords

locked hairpin
12
hairpin probes
12
target cycle
8
unlocking locked
8
hairpin probe
8
hairpin
5
enzyme-assisted amplification
4
target
4
amplification target
4
cycle triggers
4

Similar Publications