Dry-Electrode All-Solid-State Batteries Fortified with a Moisture Absorbent.

ACS Nano

Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales 2500, Australia.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For realizing all-solid-state batteries (ASSBs), it is highly desirable to develop a robust solid electrolyte (SE) that has exceptional ionic conductivity and electrochemical stability at room temperature. While argyrodite-type LiPSCl (LPSCl) SE has garnered attention for its relatively high ionic conductivity (∼3.19 × 10 S cm), it tends to emit hydrogen sulfide (HS) in the presence of moisture, which can hinder the performance of ASSBs. To address this issue, researchers are exploring approaches that promote structural stability and moisture resistance through elemental doping or substitution. Herein, we suggest using zeolite imidazolate framework-8 as a moisture absorbent in LPSCl without modifying the structure of the SE or the electrode configuration. By incorporating highly ordered porous materials, we demonstrate that ASSBs configured with LPSCl SE display stable cyclability due to effective and long-lasting moisture absorption. This approach not only improves the overall quality of ASSBs but also lays the foundation for developing a moisture-resistant sulfide electrolyte.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c04014DOI Listing

Publication Analysis

Top Keywords

all-solid-state batteries
8
moisture absorbent
8
ionic conductivity
8
moisture
5
dry-electrode all-solid-state
4
batteries fortified
4
fortified moisture
4
absorbent realizing
4
realizing all-solid-state
4
assbs
4

Similar Publications

Hydridoborate-Based Solid Electrolytes for All-Solid-State Batteries.

Adv Mater

September 2025

College of Smart Materials and Future Energy, Fudan University, Shanghai, 200433, P. R. China.

All-solid-state batteries (ASSBs) utilizing solid electrolytes, which replace flammable liquid electrolytes, are regarded as one of the most promising prospective energy storage devices due to their inherent safety advantages and high energy density potential. As an emerging class of electrolytes for ASSBs, hydridoborates have attracted research interest because of their attractive material properties, including superior compatibility with metal anodes, low gravimetric density, and excellent solution processability. In this review, hydridoborate-based solid electrolytes (SEs) for all-solid-state batteries, including boranuide-based SEs, arachno-hydridoborate-based SEs, nido-hydridoborate-based SEs, closo-hydridoborate-based SEs, and conjuncto-hydridoborate-based SEs, are comprehensively summarized.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

The synthesis of [-BH] from [-BH] based on redox principles has been developed but is still limited. Using different oxidants often leads to various by-products and affects yields. This paper presents a facile and efficient method for synthesizing [-BH] by directly using the alkali metal salt of [-BH] as the precursor.

View Article and Find Full Text PDF

Self-Medicating Molten-Salt Synthesis of Bulk-Stabilized High-Energy Cathodes for Li-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

High-energy lithium-ion batteries necessitate stable Ni-rich layered cathodes, yet critical challenges such as lattice distortion and surface structure collapse remain unresolved. While conventional high-valence doping greatly alleviates surface degradations, it is ineffective in stabilizing bulk lattice due to dopant segregation. Here, we propose a slightly Li-rich (SLR) lattice design by partially substituting transition-metal (TM) ions with Li ions in TM layers, reducing electrostatic repulsion against high-valence dopants.

View Article and Find Full Text PDF

All-solid-state Li-metal batteries using solid polymer electrolytes (SPEs) in combination with high-voltage cathodes such as lithium nickel manganese cobalt oxide (NMC) promise enhanced battery safety, energy density, and flexibility. However, understanding the oxidative decomposition of SPEs on the cathode surfaces and characterizing the resulting cathode-electrolyte interphase (CEI) remain challenging both experimentally and computationally. This study introduces a new computational protocol based on ab initio molecular dynamics for simulating the decomposition of PEO:LiTFSI SPE on the NMC-811 cathode surface using a combined electron- and Li+-removal simulation approach.

View Article and Find Full Text PDF