Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c02119 | DOI Listing |