98%
921
2 minutes
20
EEG-based emotion recognition through artificial intelligence is one of the major areas of biomedical and machine learning, which plays a key role in understanding brain activity and developing decision-making systems. However, the traditional EEG-based emotion recognition is a single feature input mode, which cannot obtain multiple feature information, and cannot meet the requirements of intelligent and high real-time brain computer interface. And because the EEG signal is nonlinear, the traditional methods of time domain or frequency domain are not suitable. In this paper, a CNN-DSC-Bi-LSTM-Attention (CDBA) model based on EEG signals for automatic emotion recognition is presented, which contains three feature-extracted channels. The normalized EEG signals are used as an input, the feature of which is extracted by multi-branching and then concatenated, and each channel feature weight is assigned through the attention mechanism layer. Finally, Softmax was used to classify EEG signals. To evaluate the performance of the proposed CDBA model, experiments were performed on SEED and DREAMER datasets, separately. The validation experimental results show that the proposed CDBA model is effective in classifying EEG emotions. For triple-category (positive, neutral and negative) and four-category (happiness, sadness, fear and neutrality), the classification accuracies were respectively 99.44% and 99.99% on SEED datasets. For five classification (Valence 1-Valence 5) on DREAMER datasets, the accuracy is 84.49%. To further verify and evaluate the model accuracy and credibility, the multi-classification experiments based on ten-fold cross-validation were conducted, the elevation indexes of which are all higher than other models. The results show that the multi-branch feature fusion deep learning model based on attention mechanism has strong fitting and generalization ability and can solve nonlinear modeling problems, so it is an effective emotion recognition method. Therefore, it is helpful to the diagnosis and treatment of nervous system diseases, and it is expected to be applied to emotion-based brain computer interface systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399240 | PMC |
http://dx.doi.org/10.3389/fphys.2023.1200656 | DOI Listing |
PLoS One
September 2025
Department of Psychology, University of Duisburg-Essen, Essen, Germany.
The susceptibility to emotional contagion has been psychometrically addressed by the self-reported Emotional Contagion Scale. With the present research, we validated a German adaptation of this scale and developed a mimicry brief version by selecting only the four items explicitly addressing the overt subprocess of mimicry. Across three studies (N1 = 195, N2 = 442, N3 = 180), involving various external measures of empathy, general personality domains, emotion recognition, and other constructs, the total German Emotional Contagion Scale demonstrated sound convergent and discriminant validity.
View Article and Find Full Text PDFRheumatology (Oxford)
September 2025
Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
Objectives: Many patients with systemic sclerosis (SSc) experience impaired hand function, yet the precise nature and impact of this impairment remains unclear. In this study, we explored the determinants of hand function impairment in SSc from a patient perspective and its impact on daily life. Additionally, we identified unmet care needs related to hand function impairment.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:
Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.
View Article and Find Full Text PDFRev Esc Enferm USP
September 2025
Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil.
Objective: To evaluate the impact of an educational intervention on nursing care for women with signs of postpartum depression for primary health care nurses.
Method: Quasi-experimental, before-and-after study carried out with 14 primary health care nurses from a municipality, who participated in an educational intervention on nursing care for women with signs of postpartum depression. Qualitative data analysis was carried out before and after the intervention, using Bardin's thematic content analysis.
Ear Hear
September 2025
Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
Objectives: Alexithymia is characterized by difficulties in identifying and describing one's own emotions. Alexithymia has previously been associated with deficits in the processing of emotional information at both behavioral and neurobiological levels, and some studies have shown elevated levels of alexithymic traits in adults with hearing loss. This explorative study investigated alexithymia in young and adolescent school-age children with hearing aids in relation to (1) a sample of age-matched children with normal hearing, (2) age, (3) hearing thresholds, and (4) vocal emotion recognition.
View Article and Find Full Text PDF