98%
921
2 minutes
20
Background: Detecting pathological complete response (pCR) before surgery would facilitate nonsurgical approach after neoadjuvant chemotherapy (NAC). We developed an artificial intelligence (AI)-guided pCR evaluation using a deep neural network to identify pCR before surgery.
Methods: This study examined resectable esophageal squamous cell carcinoma (ESCC) patients who underwent esophagectomy after NAC. The same number of histological responders without pCR and non-responders were randomly selected based on the number of pCR patients. Endoscopic images were analyzed using a deep neural network. A test dataset consisting of 20 photos was used for validation. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of AI and four experienced endoscopists' pCR evaluations were calculated. For pathological response evaluation, Japanese Classification of Esophageal Cancer was used.
Results: The study enrolled 123 patients, including 41 patients with pCR, the same number of histological responders without pCR, and non-responders [grade 0, 5 (4%); grade 1a, 36 (30%); grade 1b, 21 (17%); grade 2, 20 (16%); grade 3, 41 (33%)]. In 20 models, the median values of sensitivity, specificity, PPV, NPV, and accuracy for endoscopic response (ER) detection were 60%, 81%, 77%, 67%, and 70%, respectively. Similarly, the endoscopists' median of these was 43%, 90%, 85%, 65%, and 66%, respectively.
Conclusions: This proof-of-concept study demonstrated that the AI-guided endoscopic response evaluation after NAC could identify pCR with moderate accuracy. The current AI algorithm might guide an individualized treatment strategy including nonsurgical approach in ESCC patients through prospective studies with careful external validation to demonstrate the clinical value of this diagnostic approach including primary tumor and lymph node.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-023-13862-0 | DOI Listing |
J Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFFront Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFMed Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDF