98%
921
2 minutes
20
Background: Disrupted intestinal epithelial barrier is one of the major causes of Crohn's disease (CD). Novel molecular targets for intestinal epithelial barrier are essential to treatment of CD. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is an adhesion molecule that regulates cell adhesion, migration, and enterocyte differentiation. However, the function and mechanism of TMIGD1 in CD and intestinal epithelial barrier has rarely been studied. Furthermore, the association between TMIGD1 and the clinical features of CD remains unclear.
Methods: Transcriptome analysis on colonic mucosa from CD patients and healthy individuals were performed to identify dysregulated genes. Multi-omics integration of the 1000IBD cohort including genomics, transcriptomics of intestinal biopsies, and serum proteomics identified the association between genes and characteristics of CD. Inflammation was assessed by cytokine production in cell lines, organoids and intestinal-specific Tmigd1 knockout (Tmigd1) mice. Epithelial barrier integrity was evaluated by trans-epithelium electrical resistance (TEER), paracellular permeability, and apical junction complex (AJC) expression. Co-immunoprecipitation, GST pull-down assays, mass spectrometry, proteomics, and transcriptome analysis were used to explore downstream mechanisms.
Results: Multi-omics integration suggested that TMIGD1 was negatively associated with inflammatory characteristics of CD. TMIGD1 was downregulated in inflamed intestinal mucosa of patients with CD and mice colitis models. Tmigd1 mice were more susceptible to chemically induced colitis. In epithelial cell lines and colonic organoids, TMIGD1 knockdown caused impaired intestinal barrier integrity evidenced by increased paracellular permeability and reduced TEER and AJC expression. TMIGD1 knockdown in intestinal epithelial cells also induced pro-inflammatory cytokine production. Mechanistically, TMIGD1 directly interacted with cytoplasmic BAF nuclear assembly factor 1 (BANF1) to inhibit NF-κB activation. Exogenous expression of TMIGD1 and BANF1 restored intestinal barrier function and inhibited inflammation in vitro and in vivo. TMIGD1 expression predicted response to anti-TNF treatment in patients with CD.
Conclusions: Our study demonstrated that TMIGD1 maintained intestinal barrier integrity and inactivated inflammation, and was therefore a potential therapeutic target for CD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403950 | PMC |
http://dx.doi.org/10.1186/s12916-023-02989-2 | DOI Listing |
J Innate Immun
August 2025
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.
Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China. Electronic address:
Sepsis is a systemic inflammatory response syndrome triggered by infection. Severe sepsis is associated with dysbiosis of the intestinal flora and impaired intestinal function. Ellagic acid (EA) is a natural compound known for its ability to inhibit bacteria and viruses, thereby preventing infections.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
The intestinal immune microenvironment plays a crucial role in regulating systemic immune responses and is implicated in various diseases. Nevertheless, no existing model simultaneously replicates the three-dimensional (3D) immune microenvironment and the mucosal barrier. This study presents a novel mucosa-mimic model that consists of a cell-laden hydrogel matrix and a pseudo-mucus layer that emulate the intestinal lamina propria and mucosal barrier, respectively.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:
Gut-mitochondria is an emerging paradigm in understanding the pathophysiology of complex neuropsychiatric disorders such as Schizophrenia (SCZ). This bidirectional communication network connects the gastrointestinal microbiota with mitochondrial function and brain health, offering novel insights into disease onset and progression. SCZ, characterized by hallucinations, delusions, cognitive impairments, and social withdrawal, has traditionally been attributed to genetic and neurochemical imbalances.
View Article and Find Full Text PDF