98%
921
2 minutes
20
The role of the visuospatial network in mathematical processing has been established, but the role of the semantic neural network in mathematical processing is still poorly understood. The current study used high-definition transcranial direct current stimulation (HD-tDCS) to examine whether the semantic network supports mathematical processing. Using a single-blind, randomized, sham-controlled experimental design, 48 participants were randomly assigned to receive either anodal or sham HD-tDCS on the left middle temporal gyrus (LMTG), a core region of the semantic network. A number series completion task was used to measure mathematical reasoning and an arithmetical computation task was used as a control condition. Both tasks were administered before and after the 20 min HD-tDCS. The results showed that anodal HD-tDCS on the LMTG enhanced performance on the number series completion task, but not on the arithmetical computation task. Trial-level analysis further showed greater improvement at the more difficult problems of the number series completion task. These results demonstrate that the semantic network plays an important role in mathematical processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10548-023-00996-3 | DOI Listing |
Pharm Res
September 2025
Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
Objective: A fundamental understanding of drug diffusion and binding processes is critical for the design and optimization of a wide variety of drug delivery devices. Most of the past literature assume binding to occur uniformly throughout the tissue, or, at best, in specific layers of a multilayer tissue. However, in many realistic scenarios, such as in cancer-targeting drugs, drug binding occurs in discrete irregularly shaped regions.
View Article and Find Full Text PDFNature
September 2025
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.
View Article and Find Full Text PDFMethods
September 2025
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Allosteric proteins play a central role in biological processes and systems. Identifying the biological impact of mutations on allosteric proteins and the phenotypes they influence during disease initiation and progression presents a significant challenge. In theory, computational methods have the potential to facilitate the interpretation of genetic variants in allosteric proteins on a large scale.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA. Electronic address:
The concept of optimality dominates contemporary human movement science, with researchers across biomechanics, motor control, and neuroscience routinely explaining observed behaviors as solutions that maximize or minimize objective functions. This paper critiques the pervasive application of optimality principles in human movement science. We argue that optimization frameworks mischaracterize biological systems for several reasons: (1) Evolution produces sufficient rather than optimal adaptations without foresight; (2) Biological systems serve multiple functions simultaneously with context-dependent prioritization; (3) Structure-function relationships co-evolve rather than optimize for fixed targets; (4) The fractal, multiscale nature of physiological signals makes traditional optimization mathematically meaningless-there are no well-defined minima or maxima in fractal landscapes; (5) Optimality models implicitly invoke a homunculus that selects optimization criteria; and (6) The concept is methodologically circular and unfalsifiable, as any behavior can be retroactively modeled as optimal for some function.
View Article and Find Full Text PDFForensic Sci Int
September 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, São Paulo 14040-091, Brazil; Instituto Nacional de Ciência e Tecnologia - Ciências Forenses (INCT Forense), Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão P
New psychoactive substances (NPS) present significant challenges for law enforcement and public health due to their rapid emergence and structural diversity, often outpacing the development of traditional analytical methods. This review explores using computational chemistry, particularly density functional theory (DFT), to obtain infrared spectra. This combination to characterize NPS began in the 2010s and has gained momentum across all continents in recent years.
View Article and Find Full Text PDF