Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Harnessing engineered Mycolicibacteria to convert cheap phytosterols into valuable steroid synthons is a basic way in the industry for the production of steroid hormones. Thus, C-19 and C-22 steroids are the two main types of commercial synthons and the products of C17 side chain degradation of phytosterols. During the conversion process of sterols, C-19 and C-22 steroids are often produced together, although one may be the main product and the other a minor byproduct. This is a major drawback of the engineered Mycolicibacteria for industrial application, which could be attributed to the co-existence of androstene-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) sub-pathways in the degradation of the sterol C17 side chain. Since the key mechanism underlying the HBC sub-pathway has not yet been clarified, the above shortcoming has not been resolved so far.

Results: The key gene involved in the putative HBC sub-pathway was excavated from the genome of M. neoaurum by comparative genomic analysis. Interestingly, an aldolase- encoding gene, atf1, was identified to be responsible for the first reaction of the HBC sub-pathway, and it exists as a conserved operon along with a DUF35-type gene chsH4, a reductase gene chsE6, and a transcriptional regulation gene kstR3 in the genome. Subsequently, atf1 and chsH4 were identified as the key genes involved in the HBC sub-pathway. Therefore, an updated strategy was proposed to develop engineered C-19 or C-22 steroid-producing strains by simultaneously modifying the AD and HBC sub-pathways. Taking the development of 4-HBC and 9-OHAD-producing strains as examples, the improved 4-HBC-producing strain achieved a 20.7 g/L production titer with a 92.5% molar yield and a 56.4% reduction in byproducts, and the improved 9-OHAD producing strain achieved a 19.87 g/L production titer with a 94.6% molar yield and a 43.7% reduction in byproduct production.

Conclusions: The excellent performances of these strains demonstrated that the primary operon involved in the HBC sub-pathway improves the industrial strains in the conversion of phytosterols to steroid synthons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398937PMC
http://dx.doi.org/10.1186/s13068-023-02376-2DOI Listing

Publication Analysis

Top Keywords

hbc sub-pathway
20
steroid synthons
12
c-19 c-22
12
operon involved
8
production steroid
8
engineered mycolicibacteria
8
c-22 steroids
8
c17 side
8
side chain
8
hbc sub-pathways
8

Similar Publications

Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons.

Biotechnol Biofuels Bioprod

August 2023

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

Background: Harnessing engineered Mycolicibacteria to convert cheap phytosterols into valuable steroid synthons is a basic way in the industry for the production of steroid hormones. Thus, C-19 and C-22 steroids are the two main types of commercial synthons and the products of C17 side chain degradation of phytosterols. During the conversion process of sterols, C-19 and C-22 steroids are often produced together, although one may be the main product and the other a minor byproduct.

View Article and Find Full Text PDF