Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the current study, we employed, structural informatics, and molecular simulation-based methods to engineer OmoMyc, a c-Myc dominant negative protein, to design novel mutants that could abrogate the c-MYC-MAX complex in Renal Carcinoma (RC). Among the total 472 mutations, only six mutations A61Q, Q64E, Q64K, N77R, Q64E-N77R, and Q64K-N77R were reported to increase the binding affinity and subjected to subsequent analysis such as protein-protein docking. The docking results revealed that the predicted mutants improve the functionality of the OmoMyc by not only increasing the binding affinity but also vdW and electrostatic energy in each complex that consequently increase the binding of the engineered OmoMyc by establishing extra hydrogen bonds, salt-bridges, and non-bonded contacts. Molecular simulation revealed a more stable behavior by the mutant complexes in contrast to the native OmoMyc however structural perturbations were reported in the regions, DBD (DNA-binding domain), loop region, and minor deviations at CTD (C terminal domain). Moreover, the hydrogen bonding and binding free energy results further validated the promising activity of our predicted mutants of OmoMyc. The results for TBE (total binding energy) revealed that the for each complex the TBE was calculated to be -87.88 ± 0.16 kcal/mol (WT OmoMyc-MAX), -91.89 ± 0.21 kcal/mol (A61Q OmoMyc-MAX), -91.55 ± 0.20 kcal/mol (Q64E OmoMyc-MAX), -95.17 ± 0.24 kcal/mol (Q64K OmoMyc-MAX), -96.49 ± 0.22 kcal/mol (N77R OmoMyc-MAX), -97.76 ± 0.22 kcal/mol (Q64E-N77R OmoMyc-MAX), and -95.31 ± 0.20 kcal/mol (Q64K-N77R OmoMyc-MAX) respectively. The results for TBE revealed promising results that allow the mutants to competitively inhibit the c-Myc-MAX complex more swiftly. Additionally, the internal motion and energy landscape were altered. These findings provide important insights into the potential of the mutants of OmoMyc as a therapeutic candidate for cancer treatment, particularly renal carcinoma, and could pave the way for the development of more effective clinical versions of OmoMyc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107257DOI Listing

Publication Analysis

Top Keywords

renal carcinoma
12
omomyc
8
engineered omomyc
8
c-myc-max complex
8
increase binding
8
binding affinity
8
predicted mutants
8
mutants omomyc
8
omomyc-max
7
mutants
5

Similar Publications

Introduction: von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary disorder characterized by the development of tumor-like lesions in multiple organs. While central nervous system hemangioblastomas, pancreatic neuroendocrine tumors, and pancreatic cysts are commonly associated with VHL disease, there have been few reported cases of pancreatic hemangioblastoma in patients with VHL disease.

Case Presentation: A male patient in his 30s had been diagnosed with VHL disease and had been followed for cerebellar and spinal hemangioblastomas, and renal cell carcinoma, for which he had undergone several tumor resections, radiation therapy, and a ventriculoperitoneal shunt.

View Article and Find Full Text PDF

Fumarate hydratase (FH) deficient uterine leiomyomas account for only 0.4 % of all uterine leiomyomas. They have some unique histological characteristics and can be linked to renal cell carcinoma (HLRCC) syndrome and hereditary leiomyomatosis.

View Article and Find Full Text PDF

Background: Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.

Methods: We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is a heterogeneous kidney malignancy driven by complex genetic, molecular, and metabolic alterations. Emerging evidence implicates centrosome dysfunction and autophagy dysregulation in RCC initiation, progression, and resistance to therapy. The centrosome plays a critical role in mitotic fidelity, and its dysfunction often leads to chromosomal and genomic instability.

View Article and Find Full Text PDF