Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the time-variability of parameters and the inaccuracy of mathematical models. To improve these, a meta-learning and self-adaptation hybrid approach is proposed in this paper to enable an underwater robot to adapt to ocean currents. Instead of using a traditional complex mathematical model, a deep neural network (DNN) serving as the basis function is trained to learn a high-order hydrodynamic model offline; then, a set of linear coefficients is adjusted dynamically by an adaptive law online. By conjoining these two strategies for real-time thrust compensation, the proposed method leverages the potent representational capacity of DNN along with the rapid response of adaptive control. This combination achieves a significant enhancement in tracking performance compared to alternative controllers, as observed in simulations. These findings substantiate that the AUV can adeptly adapt to new speeds of ocean currents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386089PMC
http://dx.doi.org/10.3390/s23146417DOI Listing

Publication Analysis

Top Keywords

meta-learning self-adaptation
8
self-adaptation hybrid
8
hybrid approach
8
ocean currents
8
real-time ocean
4
ocean current
4
current compensation
4
compensation auv
4
auv trajectory
4
trajectory tracking
4

Similar Publications

Meta-learning aims to leverage prior knowledge from related tasks to enable a base learner to quickly adapt to new tasks with limited labeled samples. However, traditional meta-learning methods have limitations as they provide an optimal initialization for all new tasks, disregarding the inherent uncertainty induced by few-shot tasks and impeding task-specific self-adaptation initialization. In response to this challenge, this article proposes a novel probabilistic meta-learning approach called prototype Bayesian meta-learning (PBML).

View Article and Find Full Text PDF

Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the time-variability of parameters and the inaccuracy of mathematical models. To improve these, a meta-learning and self-adaptation hybrid approach is proposed in this paper to enable an underwater robot to adapt to ocean currents.

View Article and Find Full Text PDF