98%
921
2 minutes
20
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380221 | PMC |
http://dx.doi.org/10.3390/ijms241411399 | DOI Listing |
Int J Mol Sci
July 2023
Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany.
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs).
View Article and Find Full Text PDFBiotechnol Bioeng
April 2019
Genentech Inc., South San Francisco, California.
Protein A chromatography is an effective capture step to separate Fc-containing biopharmaceuticals from cell culture impurities but is generally not effective for virus removal, which tends to vary among different products. Previous findings have pointed to the differences in feedstocks to protein A, composed of the products and other cell culture-related impurities. To separate the effect of the feedstock components on virus removal, and understand why certain monoclonal antibody (mAb) products have low virus log reduction values (LRVs) across protein A chromatography, we investigated the partitioning of three types of viruses on Eshmuno® A columns.
View Article and Find Full Text PDFJ Virol
September 2013
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1).
View Article and Find Full Text PDFBiotechnol Prog
December 2009
Process Research and Development, Late Stage Purification, Genentech Inc., One DNA Way, South San Francisco, CA 94080, USA.
Retrovirus-like particles (RVLPs) that are expressed during the production of monoclonal antibodies in Chinese hamster ovary (CHO) cell cultures must be removed during product recovery. Anion exchange chromatography (AEX) performed in product flow-through mode, a common component in the purification of monoclonal antibodies, has been shown to provide robust removal of a related retrovirus model, but it's ability to remove the actual RVLP impurities has not been directly investigated. We have determined the ability of a typical Q sepharose process to remove actual CHO RVLP impurities.
View Article and Find Full Text PDFVopr Virusol
April 2001
Rubella diagnostic agents for hemagglutination inhibition (HI) and enzyme immunoassay (EIA) based on rubella virus-like particles (RVLP) have been developed. Noninfectious RVLPs containing three structural E1, E2, and C proteins were expressed in transfected CHO24S cell culture. HI titer in culture medium was 1:256.
View Article and Find Full Text PDF