98%
921
2 minutes
20
Objective And Design: Systemic-Inflammatory-Autoimmune-Diseases (SIAD) is increasingly considered in Myelodysplastic-Syndromes (MDS). In this line, we evaluated the MDS auto-immunological profile, correlating it to the mutational landscape, trying to identify a molecular-genetic trigger agent related to SIAD.
Methods And Materials: Eighty-one MDS were enrolled and t-NGS was performed. Anti-Nuclear-Antibodies (ANA) were tested, and ANA-antigenic-specificity was characterized by ANA-profile, ENA-screen, anti-dsDNA. Non-Hematological-Patients (NHP) and Healthy-Donors (HD) were used as controls.
Results: At clinically relevant cut-off (≥ 1:160), ANA was significantly more frequent in MDS, while ANA-antigenic-specificity showed a low association rate. ANA ≥ 1:160-positive MDS showed a mutational landscape similar to ANA-negative/ANA < 1:160 MDS. No significant correlations between mutational and immunological profiles were found and UBA1 mutations, related to VEXAS, were absent.
Conclusions: Although ANA-positivity was found to be increased in MDS, the low ANA-antigenic-specificity suggests that autoantibodies didn't recognize autoimmune-pathognomonic antigens. The lack of relationship between genetic profile and ANA-positivity, suggests that MDS genetic variants may not be the direct cause of SIAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499973 | PMC |
http://dx.doi.org/10.1007/s00011-023-01773-5 | DOI Listing |
J Chem Inf Model
September 2025
College of Agriculture and Biological Science, Dali University, Dali 671000, China.
The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.
View Article and Find Full Text PDFHead Neck Pathol
September 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
Myoepithelial carcinoma (MECA) is a malignant neoplasm composed exclusively of myoepithelial cells and accounts for less than 1% of all salivary gland tumors. Its diagnosis is often challenging due to histologic overlaps with benign lesions and its variable morphologic presentation. Although molecular profiling has emerged as a valuable tool in salivary gland tumor classification, the genetic landscape of MECA remains incompletely defined.
View Article and Find Full Text PDFEndocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDFTher Adv Hematol
September 2025
Department of Hematology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China.
Myelodysplastic syndromes (MDS), particularly in older adults aged 60 years and above, present significant therapeutic challenges due to poor prognosis and limited treatment options. Higher-risk MDS (HR-MDS), defined by the Revised International Prognostic Scoring System score of ⩾3.5, is characterized by increased myeloblasts, severe cytopenia, and a median survival of <2 years.
View Article and Find Full Text PDFImmune Netw
August 2025
Riddell Centre for Cancer Immunotherapy, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary T2N 1N4, Canada.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) provides a curative potential for high-risk patients with leukemia following first-line therapies, driven by potent immune cell-dependent anti-tumour activities. Although deep remission can be achieved, many patients relapse after allo-HSCT, and further treatment options are scarce. Given the potent immune cell-mediated anti-leukemic effects of allo-HSCT, adoptive cellular therapies (ACTs) have been explored as an adjunctive therapy to enhance the efficacy of allo-HSCT or to treat patients who relapse after allo-HSCT.
View Article and Find Full Text PDF