98%
921
2 minutes
20
Insufficient osseointegration and implant-associated infection are major factors in the failure of Ti-based implants, thus spurring scientists to develop multifunctional coatings that are better suited for clinical requirements. Here, a new biomimetic micro/nanoscale topography coating combined with antibacterial copper was simultaneously designed for Ti-based implant surfaces by adopting a hybrid approach combining plasma electrolytic oxidation and hydrothermal treatment. The biological interactions between this biofunctionalized material interface and stem cells promoted cellular adhesion and spreading during initial attachment and supported cellular proliferation for favorable biocompatibility. Bone marrow mesenchymal stem cells (BMMSCs) on the coating displayed enhanced cellular mineral deposition ability, higher alkaline phosphatase activity, and upregulated expression of osteogenic-related markers without the addition of osteoinductive chemical factors, which improved osseointegration. More interestingly, this new coating reduced the viability of oral pathogens ( and )-the primary causes of implant-associated infections as indicated by damage of cellular structures and decreased population. This is the first study investigating the antibacterial property of dental implants modified by a hybrid approach against oral pathogens to better mimic the oral environment. These findings suggest that biofunctionalization of the implant coating by surface modification methods and the incorporation of antibacterial copper (Cu) offer superior osteogenesis capability and effective antibacterial activity, respectively. These strategies have great value in orthopedic and dental implant applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363716 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1223339 | DOI Listing |
Lung
September 2025
The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.
Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:
Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c
Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Seidman Cancer Center, University Hospitals of Cleveland, USA; Case Western Reserve University School of Medicine, USA. Electronic address:
J Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDF