98%
921
2 minutes
20
Globus pallidus necrosis (GPN) is one of typical neurological imaging features in patients with carbon monoxide (CO) poisoning. Current clinical guideline recommends neurological imaging examination for CO-intoxicated patients with conscious disturbance rather than routine screening, which may lead to undiagnosed GPN. We aimed to develop an artificial intelligence algorithm for predicting GPN in CO intoxication patients. We included CO intoxication patients with neurological images between 2000 and 2019 in Chang Gung Memorial Hospital. We collected 41 clinical and laboratory parameters on the first day of admission for algorithm development. We used fivefold cross validation and applied several machine learning algorithms. Random forest classifier (RFC) provided the best predictive performance in our cohort. Among the 261 patients with CO intoxication, 52 patients presented with GPN. The artificial intelligence algorithm using the RFC-based AI model achieved an accuracy = 79.2 ± 2.6%, sensitivity = 77.7%, precision score = 81.9 ± 3.4%, and F1 score = 73.2 ± 1.8%. The area under receiver operating characteristic was approximately 0.64. Top five weighted variables were Platelet count, carboxyhemoglobin, Glasgow Coma scale, creatinine, and hemoglobin. Our RFC-based algorithm is the first to predict GPN in patients with CO intoxication and provides fair predictive ability. Further studies are needed to validate our findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09603271231190906 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Oral and Maxillofacial Surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, China.
J Robot Surg
September 2025
Department of CSE, United Institute of Technology, Coimbatore, India.
Diabetologia
September 2025
Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
This review article, developed by the EASD Global Council, addresses the growing global challenges in diabetes research and care, highlighting the rising prevalence of diabetes, the increasing complexity of its management and the need for a coordinated international response. With regard to research, disparities in funding and infrastructure between high-income countries and low- and middle-income countries (LMICs) are discussed. The under-representation of LMIC populations in clinical trials, challenges in conducting large-scale research projects, and the ethical and legal complexities of artificial intelligence integration are also considered as specific issues.
View Article and Find Full Text PDF