Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based Deep Covolutional Neural Network (EHBO-based DCNN) for early identification of BC in the Internet of Things (IoT). Here, the Honey Badger Optimization (HBO) and Exponential Weighted Moving Average (EWMA) algorithms have been combined to create the EHBO. The EHBO is created to transfer the acquired medical data to the base station (BS) by choosing the best cluster heads to categorize the BC. Then, the statistical and texture features are extracted. Further, data augmentation is performed. Finally, the BC classification is done by DCNN. Thus, the observational outcome reveals that the EHBO-based DCNN algorithm attained outstanding performance concerning the testing accuracy, sensitivity, and specificity of 0.9051, 0.8971, and 0.9029, correspondingly. The accuracy of the proposed method is 7.23%, 6.62%, 5.39%, and 3.45% higher than the methods, such as multi-layer perceptron (MLP) classifier, deep learning, support vector machine (SVM), and ensemble-based classifier.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584750 | PMC |
http://dx.doi.org/10.1007/s10278-023-00878-x | DOI Listing |