A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell-Initiated Adaptive Immunity in Zebrafish. | LitMetric

PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell-Initiated Adaptive Immunity in Zebrafish.

J Immunol

College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2300217DOI Listing

Publication Analysis

Top Keywords

tarda infection
12
mϕ cells
12
cd8+ cell
12
pd-l1/btla checkpoint
8
immune escape
8
immunity zebrafish
8
cd8+ cells
8
target mϕ
8
cd8+
6
cells
6

Similar Publications