Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AgCl nanomaterials recently attracted scientific interest as useful structural building blocks for producing metallic nanomaterials owing to their facile synthesis, controllable morphology, and ease of removal under ambient conditions. However, their complex chemical reactivity has primarily been studied in association with water solubility or reducibility. This study investigates the pivotal role of precursor ligands in the photochemical synthesis of metallic cubic mesh nanostructures on the AgCl templates. The side reactions between AgCl and Au precursors with different ligands are thoroughly discussed along with their influence on the byproduct formation and the structural stability of the resulting metallic nanostructures. Importantly, we introduce for the first time the partial destruction of AgCl and the formation of undesirable byproducts caused by the presence of highly oxidizing and Cl-containing AuCl. In addition, a synthetic route for producing highly pure and stable metallic nanostructures using a halogen-free Au precursor or Pt-priming is proposed. Further, the photothermal properties of these replicated metallic nanostructures are presented as a new evaluation tool for analyzing their overall structural stability. Discovering the role of precursor ligands in the reaction system will prove useful as a guide for the synthesis of functional noble metal nanomaterials using silver halide templates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357579PMC
http://dx.doi.org/10.1021/acsomega.3c03096DOI Listing

Publication Analysis

Top Keywords

metallic nanostructures
12
byproduct formation
8
photothermal properties
8
role precursor
8
precursor ligands
8
structural stability
8
nanostructures
5
metallic
5
unveiling role
4
role precursors
4

Similar Publications

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

Asthma, a respiratory tract disease, is characterized by inflammation and obstruction of airway. Inflammatory cells play a significant role in allergic asthma, and there is no complete cure for asthma. One of the new approaches in medicines is nanoparticle-base treatment.

View Article and Find Full Text PDF