Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362753PMC
http://dx.doi.org/10.1186/s40851-023-00215-8DOI Listing

Publication Analysis

Top Keywords

seasonal changes
16
critical temperature
16
medaka populations
12
critical
9
populations
9
photoperiods temperatures
8
seasonal
8
higher latitudes
8
lower latitudes
8
genetic basis
8

Similar Publications

Background: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants and young children. The COVID-19 pandemic significantly disrupted global RSV epidemiology. This study aimed to investigate the impact of the pandemic on RSV epidemiology in northern Taiwan from 2018 to 2023.

View Article and Find Full Text PDF

Urban green areas are vital yet underexplored reservoirs of microbial diversity in cities. This study examines myxomycete communities in Zijin Mountain National Forest Park, a subtropical urban forest in Nanjing, China, across four seasons and multiple forest types. Combining field collections and moist chamber cultures, we documented 60 species from 906 occurrence records.

View Article and Find Full Text PDF

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF

Alpine ecosystems are critical for water regulation but highly sensitive to climate change. In the Three-River Source Region (TRSR) of the Qinghai-Tibet Plateau, changes in temperature, precipitation, and large-scale ecological restoration have significantly altered vegetation phenology-including the start (SOS), end (EOS), and length (LOS) of the growing season, as well as vegetation growth status (GS). These shifts affect hydrological processes such as evapotranspiration, soil moisture, snowmelt, and runoff.

View Article and Find Full Text PDF

Thermal stability of pigment- and structurally based body coloration in a polymorphic lizard.

J Therm Biol

September 2025

Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, Spain.

Animal coloration plays a fundamental role in communication, camouflage, aposematism, mimicry and thermoregulation, and has strong implications for adaptation and diversification. Phenotypic plasticity of color traits can thus affect social, reproductive, antipredator, or thermoregulatory behavior and determining the causes and consequences of color change helps us understand evolution. In contrast to seasonal or ontogenetic color changes, physiological color change in response to fine-scale changes in environmental conditions has received less attention.

View Article and Find Full Text PDF