Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Proton treatment can potentially spare patients with H&N cancer for substantial treatment-related toxicities. The current study investigated the reproducibility of a decentralised model-based selection of patients for a proton treatment study when the selection plans were compared to the clinical treatment plans performed at the proton centre.
Methods: Sixty-three patients were selected for proton treatment in the six Danish Head and Neck Cancer (DAHANCA) centres. The patients were selected based on normal tissue complication probability (NTCP) estimated from local photon and proton treatment plans, which showed a ΔNTCP greater than 5%-point for either grade 2 + dysphagia or grade 2 + xerostomia at six months. The selection plans were compared to the clinical treatment plans performed at the proton centre.
Results: Of the 63 patients, 49 and 25 were selected based on an estimated benefit in risk of dysphagia and xerostomia, respectively. Eleven patients had a potential gain in both toxicities. The mean ΔNTCP changed from the local selection plan comparison to the clinical comparison from 6.9 to 5.3 %-points (p = 0.01) and 7.3 to 4.9 %-points (p = 0.03) for dysphagia and xerostomia, respectively. Volume differences in both CTV and OAR could add to the loss in ΔNTCP. 61 of the 63 clinical plans had a positive ΔNTCP, and 38 had a ΔNTCP of 5%-points for at least one of the two endpoints.
Conclusion: A local treatment plan comparison can be used to select candidates for proton treatment. The local comparative proton plan overestimates the potential benefit of the clinical proton plan. Continuous quality assurance of the delineation procedures and planning is crucial in the subsequent randomised clinical trial setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2023.109812 | DOI Listing |