A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Probing the symmetry breaking of a light-matter system by an ancillary qubit. | LitMetric

Probing the symmetry breaking of a light-matter system by an ancillary qubit.

Nat Commun

Interdisciplinary Center of Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena and promise new applications in quantum technologies. In these nonperturbative regimes, a qubit-resonator system has an entangled quantum vacuum with a nonzero average photon number in the resonator, where the photons are virtual and cannot be directly detected. The vacuum field, however, is able to induce the symmetry breaking of a dispersively coupled probe qubit. We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator deep-strongly coupled with a flux qubit. This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359332PMC
http://dx.doi.org/10.1038/s41467-023-40097-0DOI Listing

Publication Analysis

Top Keywords

symmetry breaking
12
deep-strong coupling
8
probing symmetry
4
breaking light-matter
4
light-matter system
4
system ancillary
4
ancillary qubit
4
qubit hybrid
4
hybrid quantum
4
quantum systems
4

Similar Publications