Molecular Structures and Microwave Spectra of the Gas-Phase Homodimers of 3-Fluoro-1,2-epoxypropane and 3,3-Difluoro-1,2-epoxypropane.

J Phys Chem A

Department of Chemistry, Amherst College, P.O. Box 5000, Amherst, Massachusetts 01002-5000, United States.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular structures for the heterochiral and homochiral gas-phase homodimers of 3-fluoro-1,2-epoxypropane and 3,3-difluoro-1,2-epoxypropane are investigated using both ab initio and density functional quantum chemistry calculations. Although microwave spectra for the heterochiral dimers are not observed as the lowest-energy isomers lack an electric dipole moment and others are presumably too high in energy, rotational spectra are observed for the homochiral dimers of each molecule that are consistent with the lowest-energy isomers of each. The presence of hydrogen atoms in the fluoromethyl groups makes it possible for these groups to participate in the intermolecular interactions that stabilize these dimers, resulting in a distinctly different bonding motif than is observed in the homodimers of 3,3,3-trifluoro-1,2-epoxypropane where the lack of a hydrogen atom prevents this possibility. The rotational spectra and energy ordering of the dimers are sufficiently well predicted with modest calculational methods to enable straightforward assignment of the observed spectra and to identify the molecular carrier of an assigned spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c03643DOI Listing

Publication Analysis

Top Keywords

molecular structures
8
microwave spectra
8
gas-phase homodimers
8
homodimers 3-fluoro-12-epoxypropane
8
3-fluoro-12-epoxypropane 33-difluoro-12-epoxypropane
8
lowest-energy isomers
8
rotational spectra
8
spectra
5
structures microwave
4
spectra gas-phase
4

Similar Publications

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

Multistate Ferroelectricity Enabled by Electrically Controlled Phase Transition of Two-Dimensional Ices.

Phys Rev Lett

August 2025

Nanjing University of Aeronautics and Astronautics, State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nano Science, Nanjing, 210016, China.

Multistate ferroelectric polarization holds promise for realizing high-density nonvolatile memory devices, but so far is restricted to a few traditional ferroelectrics. Here, we show that nanoconfined two-dimensional (2D) ferroelectric ice can achieve phase-dependent multistate polarization through extensive classical and ab initio molecular dynamics simulations. An in-plane electric field is found to induce the reversible transition between a low-polarization AA-stacked hexagonal ice phase and an unprecedented high-polarization AB-stacked ice phase, resulting in a four-state ferroelectric switching pathway.

View Article and Find Full Text PDF

Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.

View Article and Find Full Text PDF

Cicada rib-inspired tough films through nanoconfined crystallization for use in acoustic transducers.

Sci Adv

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.

Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF