A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring intellectual humility through the lens of artificial intelligence: Top terms, features and a predictive model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intellectual humility (IH) is often conceived as the recognition of, and appropriate response to, your own intellectual limitations. As far as we are aware, only a handful of studies look at interventions to increase IH - e.g. through journalling - and no study so far explores the extent to which having high or low IH can be predicted. This paper uses machine learning and natural language processing techniques to develop a predictive model for IH and identify top terms and features that indicate degrees of IH. We trained our classifier on the dataset from an existing psychological study on IH, where participants were asked to journal their experiences with handling social conflicts over 30 days. We used Logistic Regression (LR) to train a classifier and the Linguistic Inquiry and Word Count (LIWC) dictionaries for feature selection, picking out a range of word categories relevant to interpersonal relationships. Our results show that people who differ on IH do in fact systematically express themselves in different ways, including through expression of emotions (i.e., positive, negative, and specifically anger, anxiety, sadness, as well as the use of swear words), use of pronouns (i.e., first person, second person, and third person) and time orientation (i.e., past, present, and future tenses). We discuss the importance of these findings for IH and the value of using such techniques for similar psychological studies, as well as some ethical concerns and limitations with the use of such semi-automated classifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actpsy.2023.103979DOI Listing

Publication Analysis

Top Keywords

intellectual humility
8
top terms
8
terms features
8
predictive model
8
exploring intellectual
4
humility lens
4
lens artificial
4
artificial intelligence
4
intelligence top
4
features predictive
4

Similar Publications