Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controlling regio- and enantioselectivity in C-H functionalization reactions is of paramount importance due to their versatile synthetic utilities. Herein, we describe a new approach for the asymmetric δ-C(sp)-H amidation catalysis of dioxazolones using a Cu(I) precursor with a chiral bisoxazoline ligand to access six-membered lactams with high to excellent regio- and enantioselectivity (up to >19:1 rr and >99:1 er). Combined experimental and computational mechanistic studies unveiled that the open-shell character of the postulated Cu-nitrenoids enables the regioselective hydrogen atom abstraction and subsequent enantio-determining radical rebound of the resulting carbon radical intermediates. The synthetic utility of this asymmetric cyclization was demonstrated in the diastereoselective introduction of additional functional groups into the chiral δ-lactam skeleton as well as in the rapid access to biorelevant azacyclic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c05258DOI Listing

Publication Analysis

Top Keywords

regio- enantioselectivity
8
regio- enantioselective
4
enantioselective catalytic
4
catalytic δ-c-h
4
δ-c-h amidation
4
amidation dioxazolones
4
dioxazolones enabled
4
enabled open-shell
4
open-shell copper-nitrenoid
4
copper-nitrenoid transfer
4

Similar Publications

We report an efficient Lewis acid catalyzed enantioselective synthesis of diarylindolylmethanes via in situ generated -quinone methides. The protocol enables selective Friedel-Crafts alkylation at indole C3, and by blocking this site, extends selectively to C2 position. Mechanistic studies, including quantum calculations and Hammett analysis, reveal selectivity arising from β-methide steric hindrance and catalyst-substrate π-π interactions.

View Article and Find Full Text PDF

Advances in the Catalytic Asymmetric Synthesis of Chiral α-Aryl Ketones.

Chem Rec

September 2025

Department of Chemistry, St. Thomas College Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.

An α-aryl-substituted enantioenriched ketone is a valuable building block for the production of both natural and medicinal compounds. Research into their asymmetric synthesis can be challenging yet rewarding because of the need to control regio-, chemo-, and enantioselectivity carefully. A wide range of catalytic strategies has been developed during the past three decades to gain access to these favored motifs.

View Article and Find Full Text PDF

A regio-, diastereo-, and enantioselective cobalt-catalyzed C-H activation/annulation of aromatic and alkenyl amides has been developed to access heterocycles featuring vicinal C-C and C-N diaxes. This strategy uniquely harnesses previously unexplored electronically unbiased internal alkynes and proceeds under mild conditions to deliver products in high yields with excellent regio- and stereocontrol.

View Article and Find Full Text PDF

Herein, we report an optimized Pd/Cu bimetallic catalyst that facilitates the stereoselective allylic alkylation of secondary and tertiary nitriles under mild conditions. This method affords homoallylic nitriles with adjacent tri- and tetrasubstituted stereocenters. Using both racemic and enantioselective catalysts, the system exhibits high regio- and enantioselectivity (ee up to 91%).

View Article and Find Full Text PDF

Despite increasing demand for chiral fluorinated organic molecules, enantioselective C-H fluorination remains among the most challenging and sought-after transformations in organic synthesis. Furthermore, utilizing nucleophilic sources of fluorine is especially desirable for F-radiolabelling. To date, methods for enantioselective nucleophilic fluorination of inert C(sp)-H bonds remain unknown.

View Article and Find Full Text PDF