Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controlling regio- and enantioselectivity in C-H functionalization reactions is of paramount importance due to their versatile synthetic utilities. Herein, we describe a new approach for the asymmetric δ-C(sp)-H amidation catalysis of dioxazolones using a Cu(I) precursor with a chiral bisoxazoline ligand to access six-membered lactams with high to excellent regio- and enantioselectivity (up to >19:1 rr and >99:1 er). Combined experimental and computational mechanistic studies unveiled that the open-shell character of the postulated Cu-nitrenoids enables the regioselective hydrogen atom abstraction and subsequent enantio-determining radical rebound of the resulting carbon radical intermediates. The synthetic utility of this asymmetric cyclization was demonstrated in the diastereoselective introduction of additional functional groups into the chiral δ-lactam skeleton as well as in the rapid access to biorelevant azacyclic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c05258DOI Listing

Publication Analysis

Top Keywords

regio- enantioselectivity
8
regio- enantioselective
4
enantioselective catalytic
4
catalytic δ-c-h
4
δ-c-h amidation
4
amidation dioxazolones
4
dioxazolones enabled
4
enabled open-shell
4
open-shell copper-nitrenoid
4
copper-nitrenoid transfer
4

Similar Publications

Enantioselective Construction of Fused N-Heterocycles Sequential Annulation and Catalytic Transfer Hydrogenation.

Org Lett

September 2025

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.

Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.

View Article and Find Full Text PDF

We report an efficient Lewis acid catalyzed enantioselective synthesis of diarylindolylmethanes via in situ generated -quinone methides. The protocol enables selective Friedel-Crafts alkylation at indole C3, and by blocking this site, extends selectively to C2 position. Mechanistic studies, including quantum calculations and Hammett analysis, reveal selectivity arising from β-methide steric hindrance and catalyst-substrate π-π interactions.

View Article and Find Full Text PDF

Advances in the Catalytic Asymmetric Synthesis of Chiral α-Aryl Ketones.

Chem Rec

September 2025

Department of Chemistry, St. Thomas College Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.

An α-aryl-substituted enantioenriched ketone is a valuable building block for the production of both natural and medicinal compounds. Research into their asymmetric synthesis can be challenging yet rewarding because of the need to control regio-, chemo-, and enantioselectivity carefully. A wide range of catalytic strategies has been developed during the past three decades to gain access to these favored motifs.

View Article and Find Full Text PDF

A regio-, diastereo-, and enantioselective cobalt-catalyzed C-H activation/annulation of aromatic and alkenyl amides has been developed to access heterocycles featuring vicinal C-C and C-N diaxes. This strategy uniquely harnesses previously unexplored electronically unbiased internal alkynes and proceeds under mild conditions to deliver products in high yields with excellent regio- and stereocontrol.

View Article and Find Full Text PDF

Herein, we report an optimized Pd/Cu bimetallic catalyst that facilitates the stereoselective allylic alkylation of secondary and tertiary nitriles under mild conditions. This method affords homoallylic nitriles with adjacent tri- and tetrasubstituted stereocenters. Using both racemic and enantioselective catalysts, the system exhibits high regio- and enantioselectivity (ee up to 91%).

View Article and Find Full Text PDF