Modelling Cell Orientation Under Stretch: The Effect of Substrate Elasticity.

Bull Math Biol

Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When cells are seeded on a cyclically deformed substrate like silicon, they tend to reorient their major axis in two ways: either perpendicular to the main stretching direction, or forming an oblique angle with it. However, when the substrate is very soft such as a collagen gel, the oblique orientation is no longer observed, and the cells align either along the stretching direction, or perpendicularly to it. To explain this switch, we propose a simplified model of the cell, consisting of two elastic elements representing the stress fiber/focal adhesion complexes in the main and transverse directions. These elements are connected by a torsional spring that mimics the effect of crosslinking molecules among the stress fibers, which resist shear forces. Our model, consistent with experimental observations, predicts that there is a switch in the asymptotic behaviour of the orientation of the cell determined by the stiffness of the substratum, related to a change from a supercritical bifurcation scenario, whereby the oblique configuration is stable for a sufficiently large stiffness, to a subcritical bifurcation scenario at a lower stiffness. Furthermore, we investigate the effect of cell elongation and find that the region of the parameter space leading to an oblique orientation decreases as the cell becomes more elongated. This implies that elongated cells, such as fibroblasts and smooth muscle cells, are more likely to maintain an oblique orientation with respect to the main stretching direction. Conversely, rounder cells, such as those of epithelial or endothelial origin, are more likely to switch to a perpendicular or parallel orientation on soft substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352433PMC
http://dx.doi.org/10.1007/s11538-023-01180-1DOI Listing

Publication Analysis

Top Keywords

stretching direction
12
oblique orientation
12
main stretching
8
bifurcation scenario
8
orientation
6
cells
5
oblique
5
modelling cell
4
cell orientation
4
orientation stretch
4

Similar Publications

Quasielastic and Inelastic Neutron Scattering Study of Ultraconfined Water in Natural Mordenite ((Ca,Na,K)AlSiO·7HO).

Langmuir

September 2025

Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.

Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

[Development of an AI-based Positioning Technical Assistance System for Mammography].

Nihon Hoshasen Gijutsu Gakkai Zasshi

September 2025

Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.

Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.

Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.

View Article and Find Full Text PDF

Desmosomes (DSMs) are intercellular junctions essential for providing mechanical resilience to tissues, particularly the epidermis. Desmoplakin (DP) is a key DSM protein which anchors plaque proteins to keratins, thereby ensuring tissue integrity under mechanical stress. Clinically, DP mutations impair keratinocyte adhesion and structural integrity, leading to skin fragility disorders.

View Article and Find Full Text PDF

The nominally trigonal, pseudo-Jahn-Teller (PJT)-active, = 1/2 N-bound complexes, , M = Fe, Co, with three in-plane phosphine ligands and axial donors, E = Si, B, C, include functional nitrogenase models that catalyze the reduction of N to NH. We applied EPR, P ENDOR spectroscopy, and DFT computations to characterize the PJT-induced distortions of four selected , revealing how the metal ion and axial ligand E together tune both PJT dynamics, as revealed by P ENDOR and N activation, as indicated by a decrease in N≡N stretching frequency, ν(N≡N). , and each exhibit a single P isotropic hyperfine coupling, revealing dynamic pseudorotation of the PJT distortion, producing averaged symmetry with equivalent phosphine ligands.

View Article and Find Full Text PDF