A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Global patterns and controls of yield and nitrogen use efficiency in rice. | LitMetric

Global patterns and controls of yield and nitrogen use efficiency in rice.

Sci Total Environ

Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfi

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Factors influencing rice (Oryza sativa L.) yield mainly include nitrogen (N) fertilizer, climate and soil properties. However, a comprehensive analysis of the role of climatic factors and soil physical and chemical properties and their interactions in controlling global yield and nitrogen use efficiency (e.g., agronomic efficiency of N (AEN)) of rice is still pending. In this article, we pooled 2293 observations from 363 articles and conducted a global systematic analysis. We found that the global mean yield and AEN were 6791 ± 48.6 kg ha season and 15.6 ± 0.29 kg kg, respectively. Rice yield was positively correlated with latitude, N application rate, soil total and available N, and soil organic carbon, but was negatively correlated with mean annual temperature (MAT) and soil bulk density. The response of yield to soil pH followed the parabolic model, with the peak occurring at pH = 6.35. Our analysis indicated that N application rate, soil total N, and MAT were the main factors driving rice yield globally, while precipitation promoted rice yield by enhancing soil total N. N application rate was the most important inhibitor of AEN globally, while soil cation exchange capacity (CEC) was the most important stimulator of AEN. MAT increased AEN through enhancing soil CEC, but precipitation decreased it by decreasing soil CEC. The yield varies with climatic zones, being greater in temperate and continental regions with low MAT than in tropical regions, but the opposite was observed for AEN. The driving factors of yield and AEN were climatic zone specific. Our findings emphasize that soil properties may interact with future changes in temperature to affect rice production. To achieve high AEN in rice fields, the central influence of CEC on AEN should be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165484DOI Listing

Publication Analysis

Top Keywords

soil
12
rice yield
12
application rate
12
soil total
12
yield
10
aen
9
yield nitrogen
8
nitrogen efficiency
8
rice
8
soil properties
8

Similar Publications