Identification of Bioactive Phytoconstituents, Nutritional Composition and Antioxidant Activity of Calyptocarpus vialis.

Appl Biochem Biotechnol

Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study is focused to highlight the phytochemical, nutrient content and in vitro antioxidant capacity of the wildly growing plant Calyptocarpus vialis (CV) of the Asteraceae family collected from the Garhwal region of India. Phytochemical and nutritional analysis of CV is done by qualitative and quantitative methods. Fourier-transform infrared spectroscopy (FT-IR) analysis confirmed the presence of phenols, alkanes, aliphatic primary amines, carboxylic acids, nitrile, aromatics and alcohols. Gas chromatography and mass spectroscopy (GC-MS) revealed the presence of terpenoids, plant sterols and phenols such as phytol (14.9%), stigmasterol (10.02%), viridiflorol (4.19%), squalene (2.54%) and various other phytochemicals. The plant's study reveals the existence of numerous nutritious elements, including proteins, vitamins, carbohydrates and amino acids. It also revealed the presence of the huge amount of phenolic content ⁓13.49 g in a 100-g dried CV plant sample. The antioxidant potential of methanolic extract of CV was estimated using DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging assay, phosphomolybdate assay and reducing power assay. The highest percentage of antioxidant activity determined from three assays is 74 to 87% for 1 mg of dry extract. It is observed that the CV extract act as a good antioxidant when compared to other plants of the Asteraceae family even at very low concentration of the sample. Hence, CV found in the foothills of Himalayas can be further explored as a source of potent bioactive compounds and natural and economical antioxidant for biomedical and immunity-boosting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-023-04640-5DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
8
calyptocarpus vialis
8
asteraceae family
8
revealed presence
8
antioxidant
6
identification bioactive
4
bioactive phytoconstituents
4
phytoconstituents nutritional
4
nutritional composition
4
composition antioxidant
4

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Influence of Cooking Methods on Phenolic Compounds and their Activities in Pea Shoots (Pisum sativum).

Plant Foods Hum Nutr

September 2025

Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, 351-8501, Asaka, Saitama, Japan.

Pea shoots (Pisum sativum) are well known to have nutritional benefits when consumed raw; however, the effects of home cooking on their bioactive compounds remain unclear. Therefore, we investigated how different cooking methods affect the antioxidant activity and stability of antioxidants. Our evaluation revealed that antioxidant activity is preserved by steaming but significantly reduced by microwaving and boiling, which also causes weight loss during cooking.

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF