98%
921
2 minutes
20
Neuroimaging has great potential to provide insight into the neural response to food stimuli. Remarkable advances have been made in understanding the neural activity underlying food perception, not only in normal eating but also in obesity, eating disorders, and disorders of gut-brain interaction in recent decades. In addition to the abnormal brain function in patients with eating disorders compared to healthy controls, new therapies, such as neurofeedback and neurostimulation techniques, have been developed that target the malfunctioning brain regions in patients with eating disorders based on the results of neuroimaging studies. In this review, we present an overview of early and more recent research on the central processing and regulation of eating behavior in healthy and patient populations. In order to better understand the relationship between the gut and the brain as well as the neural mechanisms underlying abnormal ingestive behaviors, we also provide suggestions for future directions to enhance our current methods used in food-related neuroimaging studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347214 | PMC |
http://dx.doi.org/10.3390/nu15133010 | DOI Listing |
Mult Scler Relat Disord
September 2025
Department of Psychology, Wayne State University, Detroit, MI, 48202, USA; Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA. Electronic address:
The ability to navigate through one's environment is crucial for maintaining independence in daily life and depends on complex cognitive and motor functions that are vulnerable to decline in persons with Multiple Sclerosis (MS). While previous research suggests a role for mobility in the physical act of navigation, it remains unclear to what extent mobility impairment and perceptions of mobility constraints may modify wayfinding and the recall of environment details in support of successful navigation. Therefore, this study examined the relations among clinical mobility function, concern about falling, and recall of environment details in a clinical sample of MS.
View Article and Find Full Text PDFNeurology
October 2025
Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, WA.
Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.
View Article and Find Full Text PDFJ Neurol
September 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Background: The "Systematic Screening of Handwriting Difficulties in Parkinson's Disease" (SOS) test is the only tool specifically designed to evaluate handwriting in people with Parkinson's Disease (pwPD). It is language specific.
Objective: To assess the construct validity, intrarater and interrater reliability of the Italian version of the SOS test.
Elife
September 2025
Center for Mind and Brain, University of California, Davis, Davis, United States.
Visual search relies on the ability to use information about the target in working memory to guide attention and make target-match decisions. The 'attentional' or 'target' template is thought to be encoded within an inferior frontal junction (IFJ)-visual attentional network. While this template typically contains veridical target features, behavioral studies have shown that target-associated information, such as statistically co-occurring object pairs, can also guide attention.
View Article and Find Full Text PDFEur J Neurol
September 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Background: Frontotemporal dementia (FTD) encompasses diverse clinical phenotypes, primarily characterized by behavioral and/or language dysfunction. A newly characterized variant, semantic behavioral variant FTD (sbvFTD), exhibits predominant right temporal atrophy with features bridging behavioral variant FTD (bvFTD) and semantic variant primary progressive aphasia (svPPA). This study investigates the longitudinal structural MRI correlates of these FTD variants, focusing on cortical and subcortical structural damage to aid differential diagnosis and prognosis.
View Article and Find Full Text PDF