Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

-expressed proteins could provide a rapid, cost-effective, and safe antigen for subunit vaccines, provided we can produce them in a properly folded form inducing neutralizing antibodies. Here, we use an -expressed SARS-CoV-2 receptor-binding domain (RBD) of the spike protein as a model to examine whether it yields neutralizing antisera with effects comparable to those generated by the S1 subunit of the spike protein (S1 or S1 subunit, thereafter) expressed in mammalian cells. We immunized 5-week-old Jcl-ICR female mice by injecting RBD (30 µg) and S1 subunit (5 µg) according to four schemes: two injections 8 weeks apart with RBD (RBD/RBD), two injections with S1 (S1/S1), one injection with RBD, and the second one with S1 (RBD/S1), and vice versa (S1/RBD). Ten weeks after the first injection (two weeks after the second injection), all combinations induced a strong immune response with IgG titer > 10 (S1/RBD < S1/S1 < RBD/S1 < RBD/RBD). In addition, the neutralization effect of the antisera ranked as S1/RBD~RBD/S1 (80%) > S1/S1 (56%) > RBD/RBD (42%). These results indicate that two injections with -expressed RBD, or mammalian-cell-produced spike S1 subunit alone, can provide some protection against SARS-CoV-2, but a mixed injection scheme yields significantly higher protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341788PMC
http://dx.doi.org/10.3390/ijms241310583DOI Listing

Publication Analysis

Top Keywords

spike protein
12
-expressed sars-cov-2
8
subunit spike
8
rbd
6
subunit
6
antisera produced
4
-expressed
4
produced -expressed
4
sars-cov-2 rbd
4
rbd complemented
4

Similar Publications

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.

Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.

View Article and Find Full Text PDF

DMBT1 promotes SARS-CoV-2 infection and its SRCR-derived peptide inhibits SARS-CoV-2 infection.

Antiviral Res

September 2025

Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai 200331, China. Electronic address:

DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.

View Article and Find Full Text PDF

Extensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.

View Article and Find Full Text PDF

Discovery of therapeutic antibodies against infectious disease pathogens presents distinct challenges. Ideal candidates must possess not only the properties required for any therapeutic antibody (e.g.

View Article and Find Full Text PDF