Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The environment surrounding a molecular junction affects its charge-transport properties and, therefore, must be chosen with care. In the case of measurements in liquid media, the solvent must provide good solvation, grant junction stability, and, in the case of electrolyte gating experiments, allow efficient electrical coupling to the gate electrodes through control of the electrical double layer. We evaluated in this study the deep eutectic solvent mixture (DES) ethaline, which is a mixture of choline chloride and ethylene glycol (1:2), for single-molecule junction fabrication with break-junction techniques. In ethaline, we were able to (i) measure challenging and poorly soluble molecular wires, exploiting the improved solvation capabilities offered by DESs, and (ii) efficiently apply an electrostatic gate able to modulate the conductance of the junction by approximately an order of magnitude within a ∼1 V potential window. The electrochemical gating results on a Au--Au junction follow exceptionally well the single-level modeling with strong gate coupling (where VDP is 1,2-di(pyridine-4-yl)ethene). Ethaline is also an ideal solvent for the measurement of very short molecular junctions, as it grants a greatly reduced snapback distance of the metallic electrodes upon point-contact rupture. Our work demonstrates that DESs are viable alternatives to often relatively expensive ionic liquids, offering good versatility for single-molecule electrical measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331827 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.3c03129 | DOI Listing |